Portable multimeters with digital display

 ASYC.IV MTX 3290-6000 cts MTX 329 - - 60000 cts

Contents

General directions 3
Introduction, Precautions and safety measures 3
Special functions 4
Symbols on the instrument 5
Warranty, Maintenance, metrological verification, Repair under warranty 6
Maintenance 7
Replacing the fuse 7
Rechargeable and primary batteries 7
Communication interface 7
Description of the instrumentsMTX 3290 frontal panel, back, terminal block.8
MTX 3291 frontal panel, back, terminal block. 9
Display unit 10
Switch 13
Keypad 15
Getting started 18
Preparation for use 18
Functional description 19

1. MAX MIN AVG mode 19
2. PEAK mode 22
3. \triangle REL mode 23
4. "CLAMP" function 25
Functions of the switch and keys 26
How are the various quantities measured? 28
5. Voltage measurement 28
6. Current measurement 29
7. Frequency measurement. 31
8. Resistance measurement 31
9. Audible continuity measurement 32
10. Diode test 32
11. Capacitance measurement. 33
12. Temperature measurement 34
13. Measurement on an MLI type speed variator 35
14. Resistive power (MTX 3291) 37
15. dBm decibels in power (MTX 3291) 38
SX-DMM software 39
Technical characteristics of MTX 3290 40
Technical characteristics of MTX 3291 50
General characteristics 61
Environmental conditions 61
Power supply 61
Display 61
Safety, CEM 61
Mechanical characteristics 61
Housing 61
Supply 62

General directions

Introduction

Precautions and

 safety measures
during use

Congratulations! You have just acquired a portable multimeter with a display digital.

We thank you for this sign of confidence in the quality of our products.
The line of instruments to which it belongs comprises the following models:

	MTX 3290	MTX 3291
Display	digital, monochrome, (70×52)	digital, monochrome, backlit (70x52)
Power supply	4 R6 primary batteries (AA format) or 4 rechargeable batteries	
Counts	6000	60000
Communication	-	IR/USB

It complies with safety standard NF EN 61010-1 + NF EN 61010-2-030 concerning electronic measuring instruments.
For best results, read this manual closely and observe the precautions of use.
Failure to observe these warnings and/or directions may damage the instrument and/or its components and may endanger the user.

- This instrument is been designed to be used as follows:
- indoors
- in an environment of pollution degree 2
- at an altitude of less than 2000 m
- at a temperature between $-10^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$
- at a relative humidity below 80% up to $31^{\circ} \mathrm{C}$.
- The safety of any system incorporating the instrument is the responsibility of the system integrator.
- Can be used for measurements on circuits:
- MTX 3290: 600V, CAT III and 300V, CAT IV.
- MTX 3291: 1000V CAT III and 600 CAT IV.

However, some accessories may lead to the use of this instrument on circuits of a lower voltage and category.

- Comply with the environmental and storage conditions.
- Check the integrity of the guards and insulation of the accessories. Any item of which the insulation is deteriorated (even partially) must be removed from service and scrapped. A change of colour of the insulation is a sign of deterioration.
- Read closely all notes preceded by the \uparrow symbol.
- As a safety measure, use only the appropriate leads and accessories supplied with the instrument or approved by the manufacturer.

General directions (continued)

Safety feature

Features protecting the measurement inputs

Special functions
Automatic detection

Automatic switching off

- It is impossible to open the battery or fuse compartment without first disconnecting the measurement leads.
- During a measurement exceeding 60 VDC or 25 Vac the symbol blinks on the display unit
- Automatic detection of a connection to the "Ampere" terminal (for both voltage and current measurements)
- When the maximum permanent voltage or current that can be measured is exceeded, an intermittent audible signal warns of the risk of an electric shock.

These multimeters have several features to protect them:

- varistor protection that clips transient voltage surges on the measurement terminals.
- PTC (Positive Temperature Coefficient) protection against permanent overvoltages less than or equal to 1000 V during resistance, capacitance, and diode test measurements.
This protection is reset automatically after the overload.
- a fuse that provides protection during current measurements.
- MTX 3290: 10A
- MTX 3291: 11A

The number of input terminals is limited to 3 : V, COM, A. Connecting the lead to the "Ampere" terminal automatically selects the corresponding function.
(6) When a change of function by the command keypad is incompatible with the connection of the lead, it triggers an audible or visual (LEADS) alert.
The current measurement is made with automatic peak range full-scale. During a current measurement, an audible alert is triggered in the event of a prolonged absence of current.

If the function is validated (\mathbf{P}), the device is automatically switched off after 30 mn of operation if there has been no action on the front panel during this time.
(4) Automatic switching off is disabled:

- in the MAX, MIN, AVG, PEAK Surveillance mode
- in the Communication mode
- if there is a voltage $>60 \mathrm{VDC}$ or 25 VAC on the terminals of the multimeter.

Warning signals

An intermittent audible signal is emitted in all "Voltage" and "Current" settings if the max. permanent value the device can measure is exceeded. It is accompanied by display of the "O. L" acronym and of the display unit.

This symbol is activated when the voltage on the "V" input exceeds 60VDC or 25 VAC in the "Voltage" setting or when the current injected between the \mathbf{A} and COM terminals exceeds 10A.

General directions (continued)

Definitions of the measurement categories
 N

CAT II: Test and measurement circuits directly connected to the points of use of the low-voltage network (power outlets and other similar points).
E.g.: Measurements on the network circuits of household appliances, portable tools, and similar devices.

CAT III: Test and measurement circuits connected to parts of the low-voltage network of the building.
E.g.: Measurements on distribution panels (including secondary meters), circuitbreakers, wiring including cables, bus bars, branch boxes, disconnecting switches, power outlets in the fixed installation, and industrial appliances and other equipment, such as motors permanently connected to the fixed installation.

CAT IV: Test and measurement circuits connected to the source of the lowvoltage network of the building.
E.g.: Measurements on devices installed before the main fuse or the circuitbreaker of the building installation.

Warning! Using a measuring instrument, a lead, or an accessory belonging to a lower measurement or voltage category derates the resulting system (instrument + leads + accessories) to the lowest measurement category and/or service voltage of any of the components.

Symbols on the instrument

Risk of electric shock: directions for connection and disconnection of the inputs. Always connect the probes or adapters to the instrument before connecting them to the measurement points. Always disconnect the probes or cords from the measurement points before disconnecting them from the instrument. These directions apply before the instrument is cleaned.

Warning: Hazard. The operator must refer to the manual each time this danger symbol is encountered.

Device entirely protected by double insulation or reinforced insulation.

Earth

In the European Union, this product is subject to selective collection for the recycling of electrical and electronic equipment waste in accordance with Directive WEEE 2002/96/EC: this equipment must not be treated as ordinary waste. The spent batteries must not be treated as ordinary waste. Take them in to the appropriate collection point for recycling.

The CE marking indicates conformity with the European "Low Voltage", "EMC", "WEEE" and "RoHS" directives.

USB (MTX 3291)

IP67

General directions (continued)

Warranty

Maintenance, metrological verification

Unpacking, repacking

Repair under warranty and post warranty

This equipment is warranted for 3 years against any defect of materials or workmanship, in accordance with the general terms of sale. During the warranty period, the instrument may be repaired only by the manufacturer, who reserves the right to repair the instrument or to replace it or part of it. If the equipment is returned to the manufacturer, the cost of transport to the manufacturer is borne by the customer.

The warranty does not apply following:

- improper use of the equipment or use in association with incompatible equipment
- modification of the equipment without the explicit permission of the manufacturer's technical staff
- maintenance done by a person not approved by the manufacturer
- adaptation to a particular application not anticipated in the definition of the equipment or by the user manual
- a shock, a fall, or flooding.

Before opening the instrument, you must disconnect it from line power and from the measurement circuits and make sure that you are not charged with static electricity, which might destroy internal components. An adjustment, maintenance, or repair of the live instrument must be undertaken only by personnel who are qualified and have familiarized themselves with the directions in this manual.
We recommend a verification of this instrument at least once a year. For checking and calibration, contact one of our accredited metrology laboratories (information and contact details available on request), at our Chauvin Arnoux subsidiary or the branch in your country.

All of the equipment has undergone mechanical and electrical checks before being dispatched. When you receive it, carry out a quick check to detect any deterioration that may have occurred during transport. Should the need arise, immediately contact our sales department and notify the carrier of the customary reservations.
Use the original packaging to reship the equipment, if possible. Indicate as clearly as possible, by a note attached to the equipment, the reasons for the transfer.

For all repairs before or after expiry of warranty, please return the device to your distributor.

General directions (continued)

Maintenance

Replacing the fuse

Rechargeable and primary batteries

Active communication interface (MTX 3291 only)

- Before replacing the fuse (reached by opening the bottom compartment), disconnect the instrument from any source of current. During the replacement, make sure that only a fuse of the appropriate rating and specified type is used. Using another type of fuse and shorting the fuse holder are strictly forbidden.
- Checking the current fuse:

Fuse: SIBA/5019906
MTX 3291: 11A: 10x38 1,000V - F breaking capacity: >20kA
MTX 3290: 10A: 6x32-600V - F
breaking capacity: >50kA

The multimeter is powered by primary or rechargeable batteries (see above).

To charge the rechargeable batteries (set of $4 \mathrm{NI}-\mathrm{MH}$ LSD batteries), use an external rapid charger, available as an accessory.
e. After replacing the batteries, wait 10s before switching the instrument back on.

The multimeter can communicate with a PC via the USB link.
The basic version includes a USB link using an isolated optical USB cord (type HX0056Z) and SX-DMM software, plus Labview and Labwindows drivers to program the devices.

e. MTX 3291: They can also be programmed via the SCPI protocol:

- to program via Labview/LW
- to recover data or program the instrument using the software
- to calibrate the MTX 3291

Description of the instruments

MTX 3290
Frontal panel
Back

Terminal block

Description of the instruments (continued)

MTX 3291
Frontal panel
Back

Prop

Terminal block

Description of the instruments (continued)

Display unit	The display is in two parts: - A digital display for convenient rea - main display unit: $\quad 12.7 \mathrm{~mm}$ - secondary display unit: $\quad 9.7 \mathrm{~mm}$ - The "bargraph" display (61 segme measurement range) for an analog
	MTX3290 double $6,000-p t s$ display

Quantities measured

- VLowZ AC voltage measurement at low impedance (VLowZ)
- VAC AC voltage measurement
- VAC/DC DC or AC+DC voltage measurement at high impedance (V)
- A Current measurement A
- Hz Frequency measurement
- $\Omega \quad$ Resistance measurement
- $\mu \mathrm{F}$ Capacitance measurement
- T ${ }^{\circ}$ Temperature measurement
- ms Measurement of the period
- \% Measurement of relative value

Units

- V Volt
- A Ampere
- Hz Hertz
- Ω Ohm
- F Farad
- ${ }^{\circ} \mathrm{F}$ Degree Fahrenheit
- ${ }^{\circ} \mathrm{C} \quad$ Degree Celsius
- ms millisecond
- k kilo $\mathrm{k} \Omega-\mathrm{kHz}$
- M Mega M $\Omega-\mathrm{MHz}$
- n nano nF
- $\mu \quad$ micro $\mu \mathrm{V}-\mu \mathrm{A}-\mu \mathrm{F}$
- m millimV-mA-mF
- \% Percentage

Description of the instruments (continued)

Symbols	Designation
AC	Measurement of the AC signal
DC	Measurement of the DC signal
AC+DC	Measurement of the AC and DC signal
AUTO	Automatic range switching
$\triangle \mathrm{REL}$	Values relative to a reference
REF	Reference value
HOLD	Storage and display of stored values
MAX MIN AVG	Value (surveillance)
MAX	Maximum value
MIN	Minimum value
AVG	Mean value
PGAK	Peak value
PEAK+	Maximum peak value
PEAK-	Minimum peak value
.run r.un ru.n	Capacitance meter, acquisition in progress
-----	Frequency measurement impossible
O.L	Overshoot of the measurement capacities
USER	USER mode (on main display unit)
BASIC	BASIC mode (on main display unit)
Z	Hertz symbol (main display unit)
Z	Hertz symbol (secondary display unit)
Ω	Ohm (main display unit)
Ω	Ohm (secondary display unit)
\%	Percentage
Ω	Positive pulse
〕	Negative pulse
PTIOO	Symbol for temperature measurement using a Pt100 probe
PTIOOO	Symbol for temperature measurement using a Pt1000 probe
≥ 1	Symbol for measurement using a current clamp
LEADS	Function selected incompatible with the connection of the lead
LowZ	Low-impedance voltage measurement
δ	Symbol of the audible continuity measurement
-1	Symbol of the measurement and testing of a semiconductor junction
\hat{s}	Warning, possibility of electric shock (*)
$\stackrel{\square}{\square}$	USB communication (MTX 3291)
1	300 Hz filter
P	Auto power OFF deactivated (permanent mode)

Description of the instruments (continued)

\square	This symbol indicates the battery charge level.
	Volt, Ohm, temperature, etc. measurement input
"	COM measurement input
10AFused	Ampere measurement input
600V CAT III	Input indication
1000V CAT III	Input indication
IR	Isolated optical link (USB) input
	Display of unit on the main display unit (2×14 segments)
	Display of unit on the secondary display unit (2×14 segments)
	Identifies the reminder of the display zone connection

(*) When voltages exceeding 60 VDC or 25 VAC are measured, the symbol flashes on the display unit.

Description of the instruments (continued)

Switch
Orange LEDs around the highly reliable virtual switch indicate the measurement function chosen. The keys of the switch have priority over the action of the keys of the keypad. The change from one function to another resets the configuration of the measurement mode.

MTX 3290

Keys of the switch		Short press	Successive short presses
		Current measurement	
	\mathbf{T}°	Temperature measurement	Selection of the type of probe: Pt100, Pt1000
		Capacitance measurement	
	VIowz	Low-impedance AC voltage measurement (VLowZ)	
		Current measurement using a current clamp	Selection of the transformation ratios $1,10,100,1,000 \mathrm{mV} / \mathrm{A}$
		Resistance measurement, audible continuity measurement, diode test	Selection of the continuity, diode functions
		Frequency measurement	
		Voltage measurement	

Description of the instruments (continued)

MTX 3291
Keys of the switch

Description of the instruments (continued)

Keypad

The keypad has the following function keys:
The keys are taken into account and applied when pressed. If the key press is validated, the instrument beeps.
Two types of action are possible:

- Short press \rightarrow press lasting <2 seconds, validated by a beep as soon as the key press is detected.
- Long press \rightarrow press lasting >2 seconds, validated by a beep as soon as the key press is detected.

MTX 3290

Function keys

	Successive short presses	Long press
Hold	Activation/deactivation of storage of the measurements and of the quantities at a given time: - Hold of the display without stopping the acquisitions. The bargraph continues to operate normally. - Exit from the HOLD mode In the MAX/MIN/AVG PEAK mode, when the HOLD is active, the blinking of the "MAX MIN AVG PEAK" symbol indicates that acquisition continues as a background task.	- Hold of the display after stabilization of the measurement (Auto HOLD) - Exit from the Auto HOLD mode
MODE AC/DC	Choice of coupling AC, DC, AC+DC: - Access to various parameters \rightarrow In dBm: change of impedance 50Ω, $75 \Omega, 90 \Omega$, 600Ω (MTX 3291 only) \rightarrow In temperature: the main display unit indicates the temperature in ${ }^{\circ} \mathrm{C}$, the other in ${ }^{\circ} \mathrm{F}$ \rightarrow In the \triangle REL mode, the key is used to change from (present value reference value) to The value is displayed in \%. (MTX 3291 only)	Activation/deactivation of auto power off (APO) (MTX 3291 only)
	Activation/deactivation of the low-pass filter $\approx 300 \mathrm{~Hz}$: The low-pass filter (4th order) makes it possible to measure the RMS voltage delivered by an MLI type speed controller (for asynchronous motor). See curve, p. 49 and 60.	Activation/deactivation of the key-press beep

Description of the instruments (continued)

Range	Manual selection of measurement range: the range defines the maximum measurement range the instrument can cover. The Auto Range mode is default.	Used to return to Auto Range mode.
$\begin{gathered} \text { PECK H } \\ \text { (*) see example } \\ \text { p. } 22 . \end{gathered}$	Activation of the Peak+ Peakmeasurements: - Peak+: displays the maximum instantaneous peak value of the measurement. - Peak-: displays the minimum instantaneous peak value of the measurement. $-1^{\text {st }}$ press: recording of PEAK+, PEAK(on the 2nd display unit). The PEAK+ value is displayed as default. - Subsequent presses: look-up of stored values (volatile).	Exit from the Peak mode
$\begin{gathered} \text { (*) MAX/MIN } \\ \text { AVG } \\ \text { (*) see example } \\ \text { p. } 19 . \end{gathered}$	Activation of the MAX, MIN, AVG measurements: - MAX and MIN inform the highest and lowest values of the effective measurement - AVG: displays the mean value of the signal since the key press Time-stamped value for the min and the max [temporary display (4s) on the main display unit, followed by return to present value] If the time (h:min:sec) exceeds (9:59:59), is displayed ----. (MTX 3291 only) $-1^{\text {st }}$ press: recording of the MAX, MIN, AVG (on the 2nd display unit). The max. value is displayed by default. - Subsequent presses: look-up of the stored values (volatile).	Exit from the MAX, MIN, AVG mode
$(*)$ (*) see example p. 23.	Activation of the relative display mode: - Display and storage of the reference and differential values in the unit of the quantity measured. - $1^{\text {st }}$ press: activates the relative mode Δ REL (present value reference value) and stores the measured value that will be used as reference. - "REF" indicates the storage of the reference. - Subsequent presses: toggles the display between the measured value and the relative measurement $\triangle R E L$.	Exit from the \triangle REL mode

Description of the instruments (continued)

	Activation of the Backlight: - successive presses to increase the brightness - circular operation: brightness 1 \rightarrow brightness 2 \rightarrow brightness 3 \rightarrow brightness 1	Deactivation of the Backlight
O	Activation/Deactivation of the zero centre bargraph: MTX 3290 only	
P	Activation/Deactivation of auto power off: MTX 3290 only	

Remark 1 - The 0 centre bargraph is managed automatically in IDC and VDC (MTX 3291 only).
When the multimeter is switched on:

- 1st press on Hold (sustained press)+press on ON/OFF \rightarrow display of all segments of the display unit.
$-2^{\text {nd }}$ press \rightarrow display of model and version (US/Europe)
- $3^{\text {rd }}$ press \rightarrow software version (display unit 1) and keyboard and display unit board versions (display unit 2)
- $4^{\text {th }}$ press \rightarrow normal operation. An audible beep acknowledges key presses.
d Remark 2 USER/BASIC mode: During power up, the device is in BASIC mode (default configuration Volt AC+DC).
- If, when you power up your multimeter, you want to activate the USER mode to recover the configuration when the multimeter was switched off, press the Range ${ }_{\text {key, hold it down, then press ON/OFF (}}$ ().
- After an automatic power down, the device restarts in USER mode.

The main display unit indicates, for 3 s , the change to USER or BASIC mode.
巴 In the Volt and Ampere functions, the multimeter starts up in $A C+D C$, as in the USER mode.

Getting started

Preparation for use

Instructions before starting up

When you use this multimeter, you must observe the usual safety rules, which:

- protect you from electrical hazards,
- protect the multimeter from operator errors.

For your safety, use only the leads and accessories (clamp meter, etc.) supplied with the instrument. Before each use, make sure that they are in perfect condition.

The devices operate with:

- 41.5 V alkaline batteries (LR6-AM3-AA) or
- $41.2 \mathrm{~V} \mathrm{NI}-\mathrm{MH}$ rechargeable batteries of the same type.

The rechargeable batteries cannot be recharged in the multimeter.
Powering up, down

Power-up configuration

Press ON/OFF
 to power up the device.
(6) Reminder: after replacing the batteries, wait 10s before powering the device back up.
If the multimeter malfunctions, a long press (>2s) on this key can be applied to power down the instrument and then restore normal operation.

In the BASIC mode, as default, the device starts up in its elementary
 configuration (default values) and in the $\bigvee_{A C+D C}$ function.

MTX 3291 only: in the USER mode, the device restarts in the configuration and function selected when it was powered down.

In the Volt and Ampere functions, the instrument restarts in AC+DC.

Automatic power down

The multimeter automatically switches itself off after 30 minutes if there has been no action on the front panel of the multimeter.
Auto power off is disabled:

- in the MAX, MIN, AVG, PEAK mode and in communication
- when the measured quantity (voltage, current) on the input exceeds the danger thresholds, for the user's safety.

Functional description

1. MAX MIN AVG mode
Displays in the
VAC+DC function

A beep indicates an overshoot or a change of quantity.

Measured signal: 230V, 50Hz:

for the MAX value: $1^{\text {st }}$ press on AVG :

The measured signal changes to 250 V , 50 Hz :

Momentary screen (4s) indicating the time-stamped max. value, if the value changes or if the value is looked up.

Functional description (continued)

The display then becomes:

for the MIN value: $2^{\text {nd }}$ press
MAX/MIN
AVG
Ex.: 3s

Momentary screen (4s) indicating the time-stamped max. value, if the value changes or if the value is looked up.

The display then becomes:

Functional description (continued)

MAX/MIN

for the AVG value: $3^{\text {rd }}$ press on

De-activation By a long press on the key.

Functional description (continued)

De-activation By a long press on the key.

Functional description (continued)

3. \triangle REL mode

Displays in the
VAC+DC function
Measured signal: $1 \mathrm{~V}, 100 \mathrm{~Hz}$:

Activation of the $\triangle R E L$ mode by

Short press on the $\triangle R E$ key:

The measured signal changes to 1.5 V :
($\Delta \mathrm{REL}=1.5 \mathrm{~V}-1 \mathrm{~V}=0.5 \mathrm{~V}$)

Functional description (continued)

Short press, in the \triangle REL mode, on MODE

A long press on the $\triangle R E$ erases the reference value.

De-activation By a long press on the key.

Functional description (continued)

4. "Clamp" function

Ex.: 10mV/A

Functional description (continued)

Serial operation of

 the keys of the switchMTX 3290

	Press 1	Press 2	Press 3	Press 4	Press 5	Short press
	v	v	v	v	v	\bigcirc
	1	1	1	1	1	\cup
	Pt100	Pt1000	Pt100	Pt1000	Pt100	\cup
	Capa	Capa	Capa	Capa	Capa	U
	VLowZ	VLowZ	VLowZ	VLowZ	VlowZ	U
	$\mathrm{R}=1$	$\mathrm{R}=10$	$\mathrm{R}=100$	$\mathrm{R}=1000$	$\mathrm{R}=1$	\cup
	Ω	Continuity	Diode	Ω	Continuity	ט
	Frequency	Frequency	Frequency	Frequency	Frequency	U

MTX 3291

	Press 1	Press 2	Press 3	Press 4	Press 5	Press 6	Short press
	v	dBm	w	v	dBm	w	0
	1	1	1	1	1	1	\bigcirc
	Pt100	Pt1000	Pt100	Pt1000	Pt100	Pt1000	0
	Capa	Capa	Capa	Capa	Capa	Capa	0
	VLowZ	VLowZ	VLowZ	VLowZ	VLowZ	VLowZ	\bigcirc
	$\mathrm{R}=1$	$\mathrm{R}=10$	$\mathrm{R}=100$	$\mathrm{R}=1000$	$\mathrm{R}=1$	$\mathrm{R}=10$	U
	Ω	Continuity	Diode	Ω	Continuity	Diode	U
	Frequency	- Pos. duty cycle	- Neg. duty cycle	- Width of pos. pulse	- Width of neg. pulse	Frequency	\cup

Functional description (continued)

Functions of the switch and keys	To access the W, continuity, diode, duty cycle, and pulse duration functions, press the button of the switch corresponding to the chosen function.
	Here are the possible combinations according to the type of measurement:

Type of measurement	MAX/MIN/ AVG	PEAK \pm	\triangle REL	$\begin{gathered} \mathrm{O} \\ \hline \end{gathered}$	RANGE		HOLD	
					Auto.	Manu.		
> Voltage VLowZ Voltage VAC Voltage VAC+DC Current AAC, AAC+DC	\checkmark	\checkmark	\checkmark	in \triangle REL only	\checkmark	\checkmark	\checkmark	\checkmark
Voltage Vdc Current Adc	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
Voltage 60mVdc	\checkmark	-	\checkmark	\checkmark	-	\checkmark	\checkmark	-
Voltage 60 mVAC Voltage 60mVAC+DC	\checkmark	\checkmark	\checkmark	in $\triangle R E L$ only	-	\checkmark	\checkmark	\checkmark
Temperature	\checkmark	-	\checkmark	-	\checkmark	\checkmark	\checkmark	-
Ohmmeter	\checkmark	-	\checkmark	in \triangle REL only	\checkmark	\checkmark	\checkmark	-
Capacitance	\checkmark	-	\checkmark		\checkmark	\checkmark	\checkmark	-
Frequency	\checkmark	-	\checkmark		\checkmark	-	\checkmark	\checkmark
Period (1/F)	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark
Continuity	-	-	-	-	\checkmark	-	-	-
Diode	-	-	-	-	\checkmark	-	\checkmark	-
dBm	-	-	-	-	\checkmark	-	\checkmark	-
W	-	-	-	-	\checkmark	-	\checkmark	-
Duty cycle (DC+, DC-)	-	-	-	-	\checkmark	-	\checkmark	-
Pulse duration (Pw+, Pw-)	-	-	-	-	\checkmark	-	\checkmark	-

Find Quality Products Online at: www.GlobalTestSupply.com

How are the various quantities measured?

(9) The connections illustrated in this chapter were made with an MTX 3290

 multimeter (6,000 points). They would be the same with an MTX 3291 (60,000 pts).\author{

1. Voltage measurement
}

AC voltage measurement, or measurement of an AC voltage superposed on a DC voltage, or DC voltage measurement at high impedance.

This position is provided to allow measurements in electrical installations. The input impedance $<1 \mathrm{M} \Omega$ serves to avoid measuring "phantom" voltages due to couplings between the lines.

In all cases, O.L is displayed above 1050V (MTX 3291) or 620V (MTX 3290) and a beep sounds when the measurement exceeds 1000V (MTX 3291) or 600V (MTX 3290).

1. Press:

2. Select $A C+D C, A C$ or $D C$ coupling of the signal by pressing

MODE (the default coupling is $A C+D C$).

Depending on what you select, the screen displays $D C, A C$ or $A C+D C$.
3. Connect the black lead to the COM terminal and the red lead to \mathbf{V}.
\& If the connection is not correct, an audible beep and a visible signal (LEADS) are activated.
4. Place the test probes on the terminals of the circuit to be measured:

5. Read the measurement value indicated on the display unit.
6. As default, the $2^{\text {nd }}$ display unit indicates the frequency, except in DC.
e. It is possible to activate the filter in VLowz, VAC+DC, VAc. The cutoff frequency of the filter is $\leq 300 \mathrm{~Hz}$.
When a voltage having a frequency above 150 Hz is measured, it is heavily attenuated, and so a large error may be observed. It is necessary in this case to deactivate the filter to have the full passband.

How are the various quantities measured? (continued)

2. Current measurement as an ammeter
3. Press:

4. Select the type of signal, $A C+D C, A C$, or $D C$, by pressing $A C D C$ on what you select, the screen displays $A C, D C$, or $A C+D C$.
5. Connect the black lead to the COM terminal and the red lead to \mathbf{A}. e If the connection is not correct, an audible beep and a visible signal (LEADS) are activated.
6. Place the test probes in series between the source and the load:

7. Read the measurement value indicated on the display unit.
O.L is displayed, if I $>20 \mathrm{~A}$.
8. As default, the $2^{\text {nd }}$ display unit indicates the frequency, except in DC.
(8) It is possible to activate the filter in AAC+DC, AAC. The cutoff frequency of the filter is $\leq 300 \mathrm{~Hz}$. When a voltage having a frequency above 150 Hz is measured, it is heavily attenuated, and so a large error may be observed. It is necessary in this case to deactivate the filter to have the full passband.

How are the various quantities measured? (continued)

with a current clamp

1. Press:
2. Select the type of signal, $A C+D C, A C$, or $D C$, by pressing $M O D E$ Depending on what you select, the screen displays AC, DC, or AC+DC.
3. Connect the black lead of the clamp to the "COM" terminal and the red lead of the clamp to "V".
4. Select the transformation ratio (the same as that of the clamp) $-1 \mathrm{mV} / \mathrm{A}$,

2 50
10mV/A, 100mV/A, or 1000mV/A - by pressing on "clamp" () to have a direct reading of the current.
5. Place the clamp around the conductor:

7. Read the measurement value indicated on the display unit. The measurement accuracy is indicated in "Technical characteristics", §. "Clamp" p. 46.
8. As default, the $2^{\text {nd }}$ display unit indicates the transformation ratio in mV / A.
\& It is possible to activate the filter in AAC+DC, AAC. The cutoff frequency of the filter is $\leq 300 \mathrm{~Hz}$.
When a voltage having a frequency above 150 Hz is measured, it is heavily attenuated, and so a large error may be observed. It is necessary in this case to deactivate the filter to have the full passband.

How are the various quantities measured? (continued)

3. Frequency measurement
4. Press:
5. Connect the black lead to the COM terminal and the red lead to \mathbf{V}.
6. Place the test probes on the terminals of the circuit to be measured.
(6) Connect the instrument as for a resistance measurement.
7. Read the measurement value indicated on the display unit. The second display unit indicates the period of the signal, 1/F.
8. Press several times to obtain (MTX 3291 only):

- positive duty cycle (DC+)
- negative duty cycle (DC-)
- positive pulse duration (Pw+)
- negative pulse duration (Pw-)
© It is possible to activate the filter in AAC+DC, AAC. The cutoff frequency of the filter is $\leq 300 \mathrm{~Hz}$.

4. Resistance measurement
5. Press the

button of the switch.
6. Connect the black lead to the COM terminal and the red lead to \mathbf{V}.
7. Place the test probes on the terminals of the component.
(4) Resistance measurements must be made with power off. However, while the presence of a voltage will prevent or throw off the measurement, it will not damage the instrument.

8. Read the measurement value indicated on the display unit.
9. O.L is displayed, if the circuit is open.

How are the various quantities measured? (continued)

```
5. Audible continuity measurement
```

1. Press: $+8$
Ω again; the " \complement^{Γ} symbol is displayed.
2. Press
3. Connect the black lead to the COM terminal and the red lead to « \mathbf{V} ».
4. Place the test probes on the terminals of the circuit to be measured.
d Connect the instrument as for a resistance measurement.
5. Read the measurement value indicated on the display unit.
6. The continuity beep sounds when $R<30 \Omega \pm 5 \Omega$.
7. O.L is displayed, if the circuit is open.
8. Diode test

$+\boldsymbol{r}$ Ω

1. Press: ; the "-十" symbol is displayed.
2. Press two times
3. Connect the black lead to the COM terminal and the red lead to V .
4. Place the test probes on the terminals of the component:

5. Read the measured threshold voltage of the junction indicated on the display unit.

If the value is $<40 \mathrm{mV} \pm 10 \mathrm{mV}$ an audible signal is triggered.
6. O.L is displayed, if the circuit is open or the threshold of the diode $>3 \mathrm{~V}$.

How are the various quantities measured? (continued)

7. Capacitance measurement
8. 4
9. Press:
10. Connect the black lead to the $C O M$ terminal and the red lead to \mathbf{V}.
11. Place the test probes on the terminals of the component:

12. Read the measurement value indicated on the display unit.
O.L is displayed, if the value to be measured exceeds the capacitance of the range.
O.L is displayed, if the capacitor is short-circuited.

- For high values, the measurement cycle includes the display of "run" with a "chaser" decimal point. This means that acquisition is in progress; wait for the display of the digital result.
"Run" is displayed immediately, if the previous measurement was in a small range.
- The prior discharge of very high capacitances helps shorten the measurement time.

How are the various quantities measured? (continued)

8. Temperature measurement

1. Press: T°.
2. Press T° to select the type of probe: Pt 100 or Pt 1000
 Pres
(6) The unit displayed as default on the main display unit is ${ }^{\circ} \mathrm{C}$.
3. Connect the adapter of the Pt 100 or Pt 1000 temperature probe $(*)$ to the "COM" and "V" terminals, making sure that the polarity is correct:

4. Read the measurement value indicated on the display unit.

If "O.L" is displayed, the probe is open-circuit or short-circuited or the value to be measured exceeds the range.

(6) For greater accuracy, avoid exposing the instrument to sudden changes of temperature.

(*) You will find a list of accessories in the CHAUVIN-ARNOUX catalogue.

How are the various quantities measured? (continued)

9. Measurement on an

MLI type speed variator

Voltage measurement

1. Press:

Viowz
2. Select the type of signal, $A C+D C, A C$, or $D C$, by pressing MODE Depending on what you select, the screen displays $A C, D C$, or $A C+D C$.
3. Select the filter by pressing +
4. Connect the black lead to the COM terminal and the red lead to V .
5. Place the test probes between two phases of the circuit to be measured:

6. Read the measurement values indicated on the display unit (voltage and frequency):

In all cases, O.L is displayed above 1050V (MTX 3291) or 620V (MTX 3290) and a beep sounds when the measurement exceeds 1000V (MTX 3291) or 600V (MTX 3290).

The presence of the symbol indicates that the 300 Hz filter is active.
Q It is very important to leave the filter activated to measure the voltage and frequency of the signal without being perturbed by the MLI.

How are the various quantities measured? (continued)

Current measurement

1. Press:
2. Select the type of signal, $A C+D C, A C$, or $D C$, by pressing MODE Depending on what you select, the screen displays $A C$, $D C$, or $A C+D C$.
3. Select the filter by pressing

4. Connect the black lead to the COM terminal and the red lead to \mathbf{A}.
5. Place the test probes in series between the source and the load:

6. Read the measurement value indicated on the display unit.
O.L is displayed, if $\mathrm{I}>20 \mathrm{~A}$.

The presence of the symbol indicates that the filter is active.
(6) It is very important to leave the filter activated to measure the voltage and frequency of the signal without being perturbed by the MLI.
7. As default, the $2^{\text {nd }}$ display unit indicates the frequency, except in DC.
(6) It is possible to make the current measurement using a current clamp in conjunction with the multimeter (see §. 2. Current measurement)

How are the various quantities measured? (continued)

10. Resistive power (MTX 3291 only)
11. Press
 three times.
12. Select $A C+D C, A C$ or $D C$ coupling of the signal by pressing

MODE
AC/DC (the default coupling is $A C+D C$).
Depending on what you select, the screen displays DC, AC or AC+DC.
3. Connect the black lead to the "COM" terminal and the red lead to "V".
4. Place the probes tips on the terminals of the resistive load:

5. As default, the main display unit indicates the power in W delivered to a 600Ω resistive load ($U^{2} / 600$).

For a load $\neq 600 \Omega$

How to measure the resistance

1. Start by applying power to the load.
2. Press . The display unit indicates the resistance.
3. Press Hold to store the resistance, which will be used to calculate the power.
4. Press three times.
5. Select $A C+D C, A C$ or $D C$ coupling of the signal by pressing MODE (the default coupling is $A C+D C$).
Depending on what you select, the screen displays DC, AC or AC+DC.
6. Apply power to the load.
7. Read the measurement value indicated on the display unit:

- the main display unit indicates the power in $W\left(U^{2} / R\right)$
- the secondary display unit indicates the resistance measured on the installation (600 Ohm by default).

How are the various quantities measured? (continued)

11. dBm decibels in power (MTX3291, only)
12. Press:
13. Press
 again.
14. Press AC/DC to select the reference resistance, $50,75,90$, or 600 Ohm .
15. Connect the black lead to the COM terminal and the red lead to V .
16. Place the test probes on the terminals of the circuit to be measured.
e. Connect the instrument as for a voltage measurement.
17. Read the measurement value indicated on the display unit:

- the main display unit indicates the value in dBm
- the secondary display unit indicates the resistance measured on the installation(50 Ω, by default).

Reminder

R	0 dBm (VRef) en
50Ω	223.6 mV
75Ω	273.86 mV
90Ω	300 mV
600Ω	774.6 mV
	XdBm $=\quad 20 \mathrm{Log} \frac{\text { Vmeasured }}{\text { VRef }}$

SX-DMM software

SX-DMM: Processing software

These multimeters can be interfaced directly with a PC or other computer using "SX-DMM" acquisition software: The transmission rate is 9600 Bauds.
The transmission parameters are fixed (8 data bits, 1 stop bit, no parity).

1. Connect the isolated optical lead to the isolated optical input of the multimeter (on the side of the multimeter). Mechanical polarization prevents connection in reverse.

Connect the USB lead to one of the USB ports of the PC.
2. Install the USB driver on your PC (see the data sheet on the CD provided).

Installing
the "SX-DMM" software

1. Install the "SX-DMM" software on the PC using the CD .
2. Start the software for data acquisition and study the various display possibilities (curves, tables, etc.).
(4) The $\xrightarrow{\bullet \rightarrow}$ symbol appears on the display unit when the instrument is controlled from the PC (REMOTE mode).

For more information, refer to the "Help" menu of the software.

Technical characteristics of the MTX 3290

Accuracy: " $n \% L+n D$ " means " $n \%$ of the reading + n Digit" (see CEl 485)	Only values with tolerances or limits are guaranteed values. Values without tolerances are given for guidance (standard NFC42670). The technical specifications are guaranteed only after 30 minutes of warming up. Except as otherwise indicated, they are valid from 10% to 100% of the measurement range.								
DC voltage	Range		Specified measurement range		Resolution	Intrinsic error		Input impedance	
	600 mV		0 to 600.0 mV		0.1 mV	0.6\% L+2D		10.9M Ω	
	6 V		0 to 6.000V		0.001V	0.3\% L+2D		10.9M	
	60 V		0 to 60.00 V		0.01 V			$10.082 \mathrm{M} \Omega$	
	600V (*)		0 to 600.0V		0.1 V			$10.008 \mathrm{M} \Omega$	
	(*) The display indicates "+OL" above +620 V and "-OL" above -620 V . Protection: 850 Vpk Secondary measurements and displays: MAX, MIN, AVG								
AC and AC+DC voltages	With this function, the user can measure the true RMS (TRMS) value of an AC voltage with its DC component (no capacitive coupling) or without its DC component.								
VAC RMS	Protection: 850Vpk								
	Range	Operating range	Specified neasurement range ${ }^{3)}$	Resolution	Uncertainty \pm)	Additional uncertainty F $(\mathrm{Hz})^{1)}$	Pass band	@ 1kHz Input impedance // < 50 pF	Peak factor
	600 mV	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{mV} \end{gathered}$	$\begin{gathered} 60.0 \mathrm{to} \\ 600.0 \mathrm{mV} \end{gathered}$	0.1 mV	$\begin{gathered} 2 \% \mathrm{~L}+ \\ 0.25 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 5 \mathrm{D} \end{gathered}$	$\begin{gathered} 45<\mathrm{F}<65 \mathrm{~Hz} \\ 0.3 \% \mathrm{~L} \\ \text { typ. } \\ \text { at } 100 \mathrm{~Hz} \\ 0.7 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$	$\begin{gathered} 10 \mathrm{~Hz} \text { to } \\ 20 \mathrm{kHz} \end{gathered}$	$10.9 \mathrm{M} \Omega$	$\begin{gathered} 3 \mathrm{to} \\ 500 \mathrm{mV} \end{gathered}$
	6 V	$\begin{gathered} 0 \text { to } \\ 6.000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0.600 \text { to } \\ & 6.000 \mathrm{~V} \end{aligned}$	0.001V	$\begin{gathered} 2 \% \mathrm{~L}+ \\ 0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 3 \mathrm{D} \end{gathered}$		$\begin{aligned} & 10 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$	$10.9 \mathrm{M} \Omega$	3 to 5 V
	60 V	$\begin{gathered} 0 \text { to } \\ 60.00 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.00 \mathrm{to} \\ & 60.00 \mathrm{~V} \end{aligned}$	0.01 V		$\begin{gathered} \text { at } 150 \mathrm{~Hz} \\ 1.8 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$		10.082 M ,	3 to 50 V
	$600 \mathrm{~V}^{2)}$	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 60.0 \text { to } \\ & 600.0 \mathrm{~V} \end{aligned}$	0.1 V		at 300 Hz 30% L typ.		$10.008 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 500 \mathrm{~V} \end{gathered}$

1) See the typical curve of the 300 Hz filter.
2) The LCD indicates "+OL" above +620V, "-OL" below -620V or above 620VRMS.
3) From 1 kHz , the measurement must exceed 15% of the range. Secondary measurements and displays: FREQ (AC coupling), MAX, MIN, AVG, PEAK

Technical characteristics of the MTX 3290 (continued)

VAC+DC TRMS Protection: 850Vpk

Range	Operating range	Specified measure. range ${ }^{3)}$	Resolution	Uncertainty $\text { DC }(\pm)$	Uncertainty $\text { AC }(\pm)$	Additional uncertainty $F(H z)^{1)}$	Pass band	Input impedance // <50 pF	Peak factor
600mV	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{mV} \end{gathered}$	$\begin{gathered} 60.0 \text { to } \\ 600.0 \mathrm{mV} \end{gathered}$	0.1 mV	$\begin{gathered} 0.8 \% \mathrm{~L} \\ \pm 10 \mathrm{D} \end{gathered}$	$\begin{gathered} 2 \% \mathrm{~L} \\ +0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 5 \mathrm{D} \end{gathered}$	$\begin{gathered} 45<\mathrm{F}<65 \mathrm{~Hz} \\ 0.3 \% \mathrm{~L} \\ \text { typ. } \\ \text { at } 100 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 10 \mathrm{~Hz} \\ \text { to } \\ 20 \mathrm{kHz} \end{gathered}$	$10.9 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 500 \mathrm{mV} \end{gathered}$
6V	$\begin{gathered} 0 \text { to } \\ 6.000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0.600 \text { to } \\ & 6.000 \mathrm{~V} \end{aligned}$	0.001V		$\begin{gathered} 2 \% \mathrm{~L} \\ +0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 3 \mathrm{D} \end{gathered}$	0.7% L typ.	$\begin{gathered} 10 \mathrm{~Hz} \\ \text { to } \\ 20 \mathrm{kHz} \end{gathered}$	$10.9 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 5 \mathrm{~V} \end{gathered}$
60V	$\begin{gathered} 0 \text { to } \\ 60.00 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.00 \text { to } \\ & 60.00 \mathrm{~V} \end{aligned}$	0.01V			$1.8 \% \mathrm{~L}$ typ.		$10.082 \mathrm{M} \Omega$	$\begin{aligned} & 3 \text { to } \\ & 50 \mathrm{~V} \end{aligned}$
$600 \mathrm{~V}^{2)}$	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 60.0 \text { to } \\ & 600.0 \mathrm{~V} \end{aligned}$	0.1V			$30 \% \text { L }$ typ.		$10.008 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 500 \mathrm{~V} \end{gathered}$

1) See the typical curve of the 300 Hz filter.
2) The LCD indicates +OL above +620 V , -OL below -620 V or above 620 VRMS .
3) From 1 kHz , the measurement must exceed 15% of the range.

Secondary measurements and displays: FREQ (AC coupling),MAX,MIN,AVG,PEAK
VLowZ Ac Protection: 850Vpk
The pass band is reduced to 300 Hz if the filter is activated. The frequency measurement is made like the measurement in a 300 Hz pass band.

Range	Operating range	Specified measurement range ${ }^{3)}$	Resolution	Uncertainty (\pm)	Additional uncertainty F $(\mathrm{Hz})^{1)}$	Input impedance $/ /<50 \mathrm{pF}$	Peak factor
600mV	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{mV} \end{gathered}$	$\begin{gathered} 60.0 \text { to } \\ 600.0 \mathrm{mV} \end{gathered}$	0.1 mV	$\begin{gathered} 2.2 \% \mathrm{~L}+ \\ 0.25 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 5 \mathrm{D} \end{gathered}$	$\begin{aligned} & 45<\mathrm{F}<65 \mathrm{~Hz} \\ & 0.3 \% \mathrm{~L} \text { typ. } \end{aligned}$	$\cong 300 \mathrm{k} \Omega$	$\begin{gathered} 3 \text { to } \\ 500 \mathrm{mV} \end{gathered}$
6V	0 to 6.000 V	$\begin{aligned} & 0.600 \text { to } \\ & 6.000 \mathrm{~V} \end{aligned}$	0.001V	$\begin{gathered} 2.2 \% \mathrm{~L}+ \\ 0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 3 \mathrm{D} \end{gathered}$	$\begin{aligned} & \text { at } 100 \mathrm{~Hz} \\ & 0.7 \% \mathrm{~L} \text { typ. } \end{aligned}$		3 to 5 V
60V	0 to 60.00 V	$\begin{aligned} & 6.00 \text { to } \\ & 60.00 \mathrm{~V} \end{aligned}$	0.01 V		$\begin{gathered} \text { at } 150 \mathrm{~Hz} \\ 1.8 \% \mathrm{~L} \text { typ. } \end{gathered}$		3 to 50V
$600 \mathrm{~V}^{2)}$	0 to 600.0V	$\begin{aligned} & 60.0 \text { to } \\ & 600.0 \mathrm{~V} \end{aligned}$	0.1V		$\begin{aligned} & \text { at } 300 \mathrm{~Hz} \\ & 30 \% \mathrm{~L} \text { typ. } \end{aligned}$		3 to 500V

1) See the typical curve of the 300 Hz filter.
2) The LCD indicates +OL above +620V, -OL below -620 V or above 620 VRMS .
3) From 1 kHz , the measurement must exceed 15% of the range.

Secondary measurements and displays: FREQ (AC coupling), MAX, MIN, AVG,PEAK

Find Quality Products Online at: www.GlobalTestSupply.com

Technical characteristics of the MTX 3290 (continued)

Currents

Three possible modes: DC, AC, AC+DC
In DC mode, you can measure a direct current or the DC component of an alternating current.
In the AC and AC+DC modes, you can measure the true RMS (TRMS) value of an alternating current with/without its direct component (no capacitive coupling in "DC" mode).

DC current

Particular reference conditions:

6 mA range: Measuring a strong current for a long time can cause a temperature rise in some components. In this case, it is necessary to wait some time for the metrological characteristics specified in 6 mA to be restored.

Range	Operating range	Specified measurement range	Resolution	Uncertainty (\pm)	Voltage drop	Protection
6 mA	0 to 6.000 mA	0.002 to 6.000 mA	$1 \mu \mathrm{~A}$	$1.2 \% \mathrm{~L} \pm 5 \mathrm{D}$	$25 \mathrm{mV} / \mathrm{mA}$	
60 mA	0 to 60.00 mA	0.02 to 60.00 mA	0.01 mA	$1.2 \% \mathrm{~L} \pm 2 \mathrm{D}$	$3 \mathrm{mV} / \mathrm{mA}$	Fuse
600 mA	0 to 600.0 mA	0.2 to 600.0 mA	0.1 mA	$1.2 \% \mathrm{~L} \pm 2 \mathrm{D}$	$0.58 \mathrm{mV} / \mathrm{mA}$	$10 \mathrm{~A} / 600 \mathrm{~V}$ $>50 \mathrm{kA}$
6 A	0 to 6.000 A	0.200 to 6.000 A	0.001 A	$1.2 \% \mathrm{~L} \pm 3 \mathrm{D}$	$0.05 \mathrm{~V} / \mathrm{A}$	
$10 \mathrm{~A} / 20 \mathrm{~A}$ $(*)$	0 to 20.00 A	0.20 to 20.00 A	0.01 A	$1.2 \% \mathrm{~L} \pm 2 \mathrm{D}$	$0.05 \mathrm{~V} / \mathrm{A}$	

The display indicates "OL" above 19.99A. The symbol blinks and a beep sounds above 10A.
(*) Acceptable overload: 10A to 15 A for 30 s max. with a pause of 5 min between 2 measurements. Ambient temp. $35^{\circ} \mathrm{C}$ max.
Secondary measurements and displays: MAX, MIN, AVG

AAC RMS current

Range	Operating range	Specified neasuremen range	Resolution	Uncertainty (\pm 40 Hz to 20kHz $(* *)$	Peak factor	Voltage drop	Protection
6 mA	0 to 6.000 mA	0.600 to 6.000 mA	$1 \mu \mathrm{~A}$	$1.7 \% \mathrm{~L} \pm 5 \mathrm{D}$	2.6 to 5 mA	$25 \mathrm{mV} / \mathrm{mA}$	
60 mA	0 to 60.00 mA	6.00 to 60.00 mA	0.01 mA		2.6 to 50 mA	$3 \mathrm{mV} / \mathrm{mA}$	
600 mA	0 to 600.0 mA	60.0 to 600.0 mA	0.1 mA	$1.5 \% \mathrm{~L} \pm 3 \mathrm{D}$	2.6 to 500 mA	$0.58 \mathrm{mV} / \mathrm{mA}$	Fuse $10 \mathrm{~A} / 600 \mathrm{~V}$ $>50 \mathrm{kA}$
6 A	0 to 6.000 A	0.600 to 6.000 A	0.001 A	$1.7 \% \mathrm{~L} \pm 5 \mathrm{D}$	2.8 to 5 A	$0.05 \mathrm{~V} / \mathrm{mA}$	
$10 \mathrm{~A} / 20 \mathrm{~A}$ $(*)$	0 to 20.00 A	1.00 to 10.00 A	0.01 A	$1.5 \% \mathrm{~L} \pm 3 \mathrm{D}$	3.7 to 8 A	$0.05 \mathrm{~V} / \mathrm{mA}$	

The display indicates "OL" above 19.99A. The symbol blinks and a beep sounds above 10A.
Secondary measurements and displays: FREQ (AC coupling) MAX, MIN, AVG, PEAK
(*) Acceptable overload: 10A to 15A for 30s max. with a pause of 5 min between 2 measurements. Ambient temp. $35^{\circ} \mathrm{C}$ max.
(**) Additional uncertainty with the 300 Hz filter.

Technical characteristics of the MTX 3290 (continued)

AAC+DC TRMS current Warning: The sum AC+DC must never exceed the range, 600 mA , or 60 mA , or 6 mA , or 6 A , or 10 A , as the case may be.

Range	Operating range	Specified measurement range	Resolution	Uncertainty AC 40 Hz at 20 kHz (\pm) (**)	Additional uncertainty DC \pm)	Peak factor	Voltage drop	Protection
6 mA	$\begin{gathered} 0 \text { to } \\ 6.000 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0.060 \text { to } \\ 6.000 \mathrm{~mA} \end{gathered}$	$1 \mu \mathrm{~A}$	$\begin{gathered} 1.7 \% \mathrm{~L}+[0.08 \% \mathrm{x} \\ (\mathrm{FkHz-1}) \mathrm{L} \\ \pm 5 \mathrm{D} \end{gathered}$	$\pm 15 \mathrm{D}$	$\begin{gathered} 2.6 \text { to } \\ 5 \mathrm{~mA} \end{gathered}$	$25 \mathrm{mV} / \mathrm{mA}$	Fuse 10A/600V $>50 \mathrm{kA}$
60mA	$\begin{gathered} 0 \text { to } \\ 60.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 6.00 \text { to } \\ 60.00 \mathrm{~mA} \end{gathered}$	0.01mA	$\begin{gathered} 1.5 \% \mathrm{~L}+[0.08 \% \mathrm{x} \\ (\mathrm{FkHz-1}) \mathrm{L} \\ \pm 3 \mathrm{D} \end{gathered}$	$\pm 13 \mathrm{D}$	$\begin{aligned} & 2.6 \text { to } \\ & 50 \mathrm{~mA} \end{aligned}$	$3 \mathrm{mV} / \mathrm{mA}$	
600mA	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 60.0 \text { to } \\ 600.0 \mathrm{~mA} \end{gathered}$	0.1 mA			$\begin{gathered} 2.6 \text { to } \\ 500 \mathrm{~mA} \end{gathered}$	0.58mV/mA	
6A	$\begin{gathered} 0 \text { to } \\ 6.000 \mathrm{~A} \end{gathered}$	$\begin{aligned} & \text { 0.600A to } \\ & 6.000 \mathrm{~A} \end{aligned}$	0.001A	$\begin{gathered} 1.7 \% ~ L+[0.08 \% x \\ \text { (FkHz-1)] L } \\ \pm 5 D \end{gathered}$	$\pm 10 \mathrm{D}$	2.8 to 5A	0.05V/mA	
$\begin{gathered} \text { 10A } \\ / 20 A^{*} \end{gathered}$	$\begin{gathered} 0 \text { to } \\ 20.00 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0.60 \mathrm{~A} \text { to } \\ & 20.00 \mathrm{~A} \end{aligned}$	0.01A	$\begin{gathered} 1.5 \% L+[0.08 \% x \\ (\text { FkHz-1)] } \\ \pm 3 D \end{gathered}$	$\pm 10 \mathrm{D}$	3.7 to 8A	0.05V/mA	

The display indicates OL above 19.99A. The symbol blinks and a beep sounds above 10A.
(*) Acceptable overload: 10A to 15 A for 30 s max. with a pause of 5 min between 2 measurements. Ambient temp. $35^{\circ} \mathrm{C}$ max.
Secondary measurements and displays: F (AC coupling), MAX, MIN, AVG, PEAK ${ }^{(* *)}$ Additional uncertainty with the 300 Hz filter.

Find Quality Products Online at: www.GlobalTestSupply.com

Technical characteristics of the MTX 3290 (continued)

Frequency

Main frequency In this setting, you can measure the frequency of a voltage. measurement

Particular reference conditions: $150 \mathrm{mV}<\mathrm{U}<600 \mathrm{~V}$
When the switch is set to Hz , the 300 Hz filter is not in service.
Protection: 850Vpk

Range	Operating range	Specified measurement range	Resolution	Intrinsic error
60 Hz	10.00 to 60.00 Hz	10.00 to 60.00 Hz	0.01 Hz	
600 Hz	10.0 to 600.0 Hz	10.00 to 600.0 Hz	0.1 Hz	$0.1 \% \mathrm{~L} \pm 1 \mathrm{D}$
6 kHz	0 to 6.000 kHz	0.010 to 6.000 kHz	0.001 kHz	
60 kHz	0 to 60.00 kHz	0.01 to 60.00 kHz	0.1 kHz	
600 kHz	0 to 200.0 kHz	0.1 to 200.00 kHz		

Below 10 Hz , or if the signal detection level is inadequate, the reading is forced to zero.
@ The measured period in ms is available on the second display unit.

Secondary You can measure the frequency and magnitude of a voltage or of a current frequency measurement

Same accuracy as in the "Hz" setting
Particular reference conditions:
$150 \mathrm{mV}<\mathrm{U}<600 \mathrm{~V}$
$0.15 \mathrm{~A}<1<10 \mathrm{~A}$
Max. frequency measurable in volts: $\quad 20 \mathrm{kHz}$
Max. frequency measurable in amperes: 20 kHz
When the switch is set to VLowZ, Volts or Ampere, if the 300 Hz filter is activated, the measurable frequency remains within the limits of the PB of the filter.
Below 10 Hz , or if the signal detection level is inadequate, the reading is forced to
\qquad

Technical characteristics of the MTX 3290 (continued)

Resistance

Ohmmeter In this setting, the user can measure a resistance.

Particular reference conditions:

The (+COM) input must not have been overloaded following the accidental application of a voltage to the input terminals with the switch set to Ω or T°. If this happens, the return to normal may take about ten minutes.
Protection: 850Vpk

Range	$\begin{gathered} \text { Specified } \\ \text { measurement } \\ \text { range } \\ \hline \end{gathered}$	Resolution	Uncertainty	Measurement current	Open-circuit voltage
600Ω	0 to 600.0 \% *	0.1Ω	0.5\% L $\pm 2 \mathrm{D}$	$\approx 850 \mu \mathrm{~A}$	<5V
$6 \mathrm{k} \Omega$	0 to $6.000 \mathrm{k} \Omega$	$0.001 \mathrm{k} \Omega$	0.5\% L $\pm 2 \mathrm{D}$	$\approx 126.6 \mu \mathrm{~A}$	
60k Ω	0 to $60.00 \mathrm{k} \Omega$	$0.01 \mathrm{k} \Omega$		$\approx 12.6 \mu \mathrm{~A}$	
600k Ω	0 to $600.0 \mathrm{k} \Omega$	$0.1 \mathrm{k} \Omega$		$\approx 1.26 \mu \mathrm{~A}$	
$6 \mathrm{M} \Omega$	0 to $6.000 \mathrm{M} \Omega$	$0.001 \mathrm{M} \Omega$	1.5\% L $\pm 3 \mathrm{D}$	$\approx 240 \mathrm{nA}$	
$60 \mathrm{M} \Omega$	0 to $60.00 \mathrm{M} \Omega$	$0.01 \mathrm{M} \Omega$	$3 \% \mathrm{~L} \pm 3 \mathrm{D}$	$\approx 29 \mathrm{nA}$	

(*) REL measurements

Capacitance

Capacitance meter

In this setting, the user can measure the capacitance of a capacitor

Range	Operating range	Specified measurement range	Resolution	Intrinsic error	Measurement current	Measurement time
6 nF	0.100 to 6.000 nF	0.100 to 6.000 nF	0.001 nF	$2.5 \% \mathrm{~L} \pm 30 \mathrm{D}$	$\approx 1.26 \mu \mathrm{~A}$	$\approx 400 \mathrm{~ms}$
60 nF	0 to 60.00 nF	0 to 60.00 nF	0.01 nF	$1.5 \% \mathrm{~L} \pm 8 \mathrm{D}$	$\approx 1.26 \mu \mathrm{~A}$	$\approx 400 \mathrm{~ms}$
600 nF	0 to 600.0 nF	0 to 600.0 nF	0.1 nF	$1.5 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1.26 \mu \mathrm{~A}$	$\approx 400 \mathrm{~ms}$
$6 \mu \mathrm{~F}$	0 to $6.000 \mu \mathrm{~F}$	0 to $6.000 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	$1.5 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 12.6 \mu \mathrm{~A}$	$\approx 0.125 \mathrm{~s} / \mu \mathrm{F}$
$60 \mu \mathrm{~F}$	0 to $60.00 \mu \mathrm{~F}$	0 to $60.00 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$	$1.5 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 126.6 \mu \mathrm{~A}$	$\approx 0.125 \mathrm{~s} / \mu \mathrm{F}$
$600 \mu \mathrm{~F}$	0 to $600.0 \mu \mathrm{~F}$	0 to $600.0 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$	$3.5 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 850 \mu \mathrm{a}$	$\approx 0.125 \mathrm{~s} / \mu \mathrm{F}$
6 mF	0 to 6.000 mF	0 to 6.000 mF	$1 \mu \mathrm{~F}$	$4.5 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 850 \mu \mathrm{a}$	$\approx 17 \mathrm{~s} / \mathrm{mF}$
60 mF	0 to 60.00 mF	0 to 60.00 mF	$10 \mu \mathrm{~F}$	$6.5 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 850 \mu \mathrm{a}$	$\approx 17 \mathrm{~s} / \mathrm{mF}$

The use of wires that are very short and shielded is strongly recommended.
Protection: 850Vpk

Technical characteristics of the MTX 3290 (continued)

Diode Test
Audible continuity

Clamp

DC current

Ratio Range		600mA	6A	60A	600A	6000A
$1 \mathrm{mV} / \mathrm{A}$	Resolution			0.01A	0.1A	1A
	Accuracy			0.6\% $\mathrm{L} \pm 2 \mathrm{D}$	0.6\%L $\pm 2 \mathrm{D}$	0.3\%L $\pm 2 \mathrm{D}$
10mV/A	Resolution		0.001 A	0.01A	0.1 A	
	Accuracy		0.6\%L $\pm 2 \mathrm{D}$	0.6\% $\mathrm{L} \pm 2 \mathrm{D}$	0.3\%L $\pm 2 \mathrm{D}$	
100mV/A	Resolution	0.1 mA	0.001 A	0.01A		
	Accuracy	0.6\%L $\pm 2 \mathrm{D}$	0.6\%L $\pm 2 \mathrm{D}$	0.3\%L $\pm 2 \mathrm{D}$		
$1000 \mathrm{mV} / \mathrm{A}$	Resolution	0.1 mA	0.001A			
	Accuracy	0.6\%L $\pm 2 \mathrm{D}$	0.3\%L $\pm 2 \mathrm{D}$			

Secondary measurements and displays: MAX, MIN, AVG and transformation ratio of the sensor

AAC RMS current

Range Ratio		600mA	6 A	60A	600A	6000A
1mV/A	Resolution			0.01A	0.1A	1A
	Accuracy			2\% L $\pm 5 \mathrm{D}$ (*)	2\% L $\pm 5 \mathrm{D}$	2\% L $\pm 3 \mathrm{D}$
$10 \mathrm{mV} / \mathrm{A}$	Resolution		0.001A	0.01A	0.1A	
	Accuracy		2\% L $\pm 5 \mathrm{D}(*)$	2\% L $\pm 5 \mathrm{D}$	2\% L $\pm 3 \mathrm{D}$	
$100 \mathrm{mV} / \mathrm{A}$	Resolution	0.1 mA	0.001 A	0.01A		
	Accuracy	2\% L $\pm 5 \mathrm{D}(*)$	2\% L $\pm 5 \mathrm{D}$	$2 \% \mathrm{~L} \pm 3 \mathrm{D}$		
$1000 \mathrm{mV} / \mathrm{A}$	Resolution	0.1 mA	0.001 A			
	Accuracy	2\% L $\pm 5 \mathrm{D}$	2\% L $\pm 3 \mathrm{D}$			
Peak factor 3		@ 500mA	@ 5A	@ 50A	@ 500A	@ 5000A

Secondary measurements and displays: MAX, MIN, AVG and transformation ratio of the sensor
300 Hz filter: if the filter is active, see " 300 Hz filter" curve for the additional uncertainty. (*) : see "Frequency response" curve, p. 47.

Technical characteristics of the MTX 3290 (continued)

Technical characteristics of the MTX 3290 (continued)

TemperaturePt100/Pt1000	user can measure the temperature by means of a $\mathrm{Pt} 100 / \mathrm{Pt} 1000$ sensor.				
	Range	Measurement current	Resolution	Accuracy	Protection
	$\begin{gathered} -125^{\circ} \mathrm{C} \text { to } \\ +75^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & <1 \mathrm{~mA}(\mathrm{Pt} 100) \\ & <0.1 \mathrm{~mA}(\mathrm{Pt} 1000) \end{aligned}$	$\begin{gathered} 0.1^{\circ} \mathrm{C} \\ ---- \end{gathered}$	$\pm 0.5^{\circ} \mathrm{C}$	850 Vpk
	$\begin{aligned} & -200^{\circ} \mathrm{C} \text { to } \\ & +800^{\circ} \mathrm{C} \end{aligned}$	$<1 \mathrm{~mA}$ (Pt100) $<0.1 \mathrm{~mA}$ (Pt1000)	$\begin{gathered} 0.1^{\circ} \mathrm{C} \\ --- \end{gathered}$	$\begin{aligned} & 0.1 \% \mathrm{~L} \pm 1^{\circ} \mathrm{C} \\ & 0.07 \% \mathrm{~L} \pm 1^{\circ} \mathrm{C} \end{aligned}$	

"Active" protection by PTC thermistor Display in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ possible

Peak

Add $1 \% L \pm 30 \mathrm{D}$ to obtain the accuracy corresponding to the function and the range.

Fmax
Protection
1kHz (1ms)

SURV
 MIN, MAX, AVG
 Operation
 of the audible beep

Add $0.2 \% \mathrm{~L}+2 \mathrm{D}$ to obtain the accuracy corresponding to the function and the range.
Acquisition time of the extrema approximately 100 ms .
Protection 850Vpk

Beep reporting a valid key	High-pitched sound
Beep reporting an invalid key	Low-pitched sound
Successive beeps reporting an overshoot of the danger threshold (alarm)	High-pitched sound
Successive beeps reporting recording of the MAX, MIN, PEAK	High-pitched sound
Successive beeps (alarm) \rightarrow current >10A	High-pitched sound
Continuity measurement	Medium- pitched sound

Technical characteristics of the MTX 3290 (continued)

Technical characteristics of the MTX 3291

Accuracy: Only values with tolerances or limits are guaranteed values.
" $n \%$ + nD" means Values without tolerances are given for guidance (standard NFC42670).
" $n \%$ of the reading
$+n$ Digit" The technical specifications are guaranteed only after 30 minutes of warming up. Except
(see CEl 485) as otherwise indicated, they are valid from 10% to 100% of the measurement range.

DC voltage

In the DC mode, you measure a direct voltage or the DC component of an AC voltage (filter activated).

60 mV range: Measuring a strong current or measuring a current for a long time may cause a temperature rise of some components.
Protection: 1414 Vpk

Range	Specified measurement range	Resolution	Intrinsic error	Input impedance
$60 \mathrm{mV}^{1)}$	0 to 60.000 mV	0.001 mV	$0.5 \% \mathrm{~L}+35 \mathrm{D}$	$10.612 \mathrm{M} \Omega$
600 mV	0 to 600.00 mV	0.01 mV	$0.5 \% \mathrm{~L}+25 \mathrm{D}$	$10.9 \mathrm{M} \Omega$
6 V	0 to 6.0000 V	0.0001 V		$10.9 \mathrm{M} \Omega$
60 V	0 to 60.000 V	0.001 V	$0.05 \% \mathrm{~L}+25 \mathrm{D}$	$10.082 \mathrm{M} \Omega$
600 V	0 to 600.00 V	0.01 V		$10.008 \mathrm{M} \Omega$
$1000 \mathrm{~V}^{2)}$	0 to 1000.0 V	0.1 V	$0.07 \% \mathrm{~L}+25 \mathrm{D}$	$10.008 \mathrm{M} \Omega$

1) This range is accessible only with the Range key.

Input impedance: approx. $10.6 \mathrm{M} \Omega / / 50 \mathrm{pF}$
2) The display indicates "+OL" above +1050 V and "-OL" below -1050 V .

Secondary measurements and displays: MAX, MIN, AVG

$A C$ and $A C+D C$

 voltagesWith this function, the user can measure the true RMS (TRMS) value of an AC voltage with its DC component (no capacitive coupling) or without its DC component.

60 mV range: Measuring a strong current or measuring a current for a long time may cause a temperature rise of some components.
Protection: 1414 Vpk

Range	Operating range	Specified measurem range ${ }^{4)}$	Resolution	Uncertainty (\pm)	Additional uncertainty $\mathrm{F}(\mathrm{Hz})^{1)}$	Pass band	@ 1kHz Input impedance //<50 pF	Peak factor
$60 \mathrm{mV}{ }^{2)}$	$\begin{gathered} 0 \text { to } \\ 60.000 \mathrm{mV} \end{gathered}$	$\begin{gathered} 6.000 \text { to } \\ 60.000 \mathrm{mV} \end{gathered}$	0.001 mV	$\begin{aligned} & 1.5 \% \mathrm{~L} \\ & \pm 35 \mathrm{D} \end{aligned}$	$45<\mathrm{F}<65 \mathrm{~Hz}$ 0.3\% L typ. at 100 Hz	$\approx 400 \mathrm{~Hz}$	$10.612 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 50.0 \mathrm{mV} \end{gathered}$
600 mV	$\begin{gathered} 0 \text { to } \\ 600.00 \mathrm{mV} \end{gathered}$	$\begin{gathered} 60.00 \text { to } \\ 600.00 \mathrm{mV} \end{gathered}$	0.01 mV	$\begin{gathered} 1 \% \mathrm{~L} \\ +0.25 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 30 \mathrm{D} \end{gathered}$		$\begin{gathered} 10 \mathrm{~Hz} \text { to } \\ 50 \mathrm{kHz} \\ (\approx 23 \% \\ @ 100 \mathrm{kHz}) \end{gathered}$	$10.9 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 500.0 \mathrm{mV} \end{gathered}$
6V	$\begin{gathered} 0 \text { to } \\ 6.0000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0.6 \text { to } \\ 6.0000 \mathrm{~V} \end{gathered}$	0.0001V	$\begin{gathered} 0.5 \% \mathrm{~L} \\ +0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 25 \mathrm{D} \end{gathered}$	0.7\% L typ.	10 Hz to 100 kHz	$10.9 \mathrm{M} \Omega$	$\begin{aligned} & 3 \text { to } \\ & 5.0 \mathrm{~V} \end{aligned}$
60V	$\begin{gathered} 0 \text { to } \\ 60.000 \mathrm{~V} \end{gathered}$	6.000 to 60.000 V	0.001V		$1.8 \% \text { L typ. }$		$10.082 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 50.0 \mathrm{~V} \end{gathered}$
600V	0 to 600.00 V	$\begin{aligned} & 60.00 \text { to } \\ & 600.00 \mathrm{~V} \end{aligned}$	0.01V		$\begin{aligned} & \text { at } 300 \mathrm{~Hz} \\ & 30 \% \mathrm{~L} \text { typ. } \end{aligned}$		$10.008 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 500.0 \mathrm{~V} \end{gathered}$
$1000 V^{3)}$	$\begin{gathered} 0 \text { to } \\ 1000.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 60 \text { to } \\ 1000.0 \mathrm{~V} \end{gathered}$	0.1V				$10.008 \mathrm{M} \Omega$	$\begin{gathered} 1.42 \text { to } \\ 1000.0 \mathrm{~V} \end{gathered}$

Technical characteristics of the MTX 3291 (continued)

VAC RMS
(continued)

1) See the typical curve of the 300 Hz .
2) This range is accessible only with the Range key Input impedance: approx. $10.6 \mathrm{M} \Omega / / 50 \mathrm{pF}$
3) The LCD indicates +OL above +1050V, -OL below -1050 V or above 1050 VRMS .
4) From 1 kHz , the measurement must exceed 15% of the range.

Secondary measurements and displays: FREQ (AC coupling), MAX, MIN, AVG, PEAK

VLowZ AC RMS The pass band (between 3dB down points) is reduced to 300 Hz , if the filter is activated. In VLowZ, there is no 60 mV range.
The frequency measurement is made like the measurement in a 300 Hz pass band.
Protection: 1414 Vpk

Range	Operating range	Specified measurement range ${ }^{3)}$	Resolution	Uncertainty (\pm)	Additional uncertainty $\mathrm{F}(\mathrm{Hz})^{1)}$	Pass band	Input impedance $/ /<50 \mathrm{pF}$
600 mV	$\begin{gathered} 0 \text { to } \\ 600.00 \mathrm{mV} \end{gathered}$	$\begin{gathered} 60.00 \text { to } \\ 600.00 \mathrm{mV} \end{gathered}$	0.01 mV	$\left\{\begin{array}{c} 1 \% \mathrm{~L}+0.25 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 30 \mathrm{D} \end{array}\right.$	$45<\mathrm{F}<65 \mathrm{~Hz}$ 0.3\% L typ. at 100 Hz 0.7% L typ. at 150 Hz 1.8\% L typ. at 300 Hz 30% L typ.	$\cong 300 \mathrm{k} \Omega$	$\begin{gathered} 3 \mathrm{to} \\ 500.0 \mathrm{mV} \end{gathered}$
6 V	$\begin{gathered} 0 \text { to } \\ 6.0000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0.6 \text { to } \\ & 6.0000 \mathrm{~V} \end{aligned}$	0.0001 V	$\begin{gathered} 0.5 \% \mathrm{~L}+ \\ 0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 25 \mathrm{D} \end{gathered}$			3 to 5.0V
60V	$\begin{gathered} 0 \text { to } \\ 60.000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.000 \mathrm{to} \\ & 60.000 \mathrm{~V} \end{aligned}$	0.001V				3 to 50.0 V
600 V	0 to 600.00V	$60.00 \text { to }$ $600.00 \mathrm{~V}$	0.01 V				3 to 500.0 V
$1000 \mathrm{~V}^{2)}$	$\begin{gathered} 0 \text { to } \\ 1000.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 60 \text { to } \\ 1000.0 \mathrm{~V} \end{gathered}$	0.1 V				$\begin{aligned} & 1.42 \mathrm{to} \\ & 1000.0 \mathrm{~V} \end{aligned}$

1) See the typical curve of the 300 Hz .
2) The LCD indicates +OL above +1050V, -OL below -1050 V or above 1050 VRMS .
3) From 1 kHz , the measurement must exceed 15% of the range.

Secondary measurements and displays: FREQ (AC coupling), MAX, MIN, AVG, PEAK
VAC+DC TRMS 60 mV range: Measuring a strong current or measuring a current for a long time may cause a temperature rise of some components.

Protection: 1414 Vpk

Range	Operating range	Specified measurem. range ${ }^{4)}$	Resolution	Additional uncertainty DC (\pm)	Uncertainty $\text { AC }(\pm)$	Additional uncertainty $\mathrm{F}(\mathrm{Hz})^{1)}$	Pass band	Input impedance //<50 pF	Peak factor
$60 \mathrm{mV}{ }^{2}$	$\begin{gathered} 0 \text { to } \\ 60.000 \mathrm{mV} \end{gathered}$	$\begin{gathered} 6.000 \mathrm{to} \\ 60.000 \mathrm{mV} \end{gathered}$	0.001 mV	$\pm 15 \mathrm{D}$	$\begin{aligned} & 1.5 \% \mathrm{~L} \\ & \pm 35 \mathrm{D} \end{aligned}$	$\begin{array}{\|c\|} \hline 45<\mathrm{F}<65 \mathrm{~Hz} \\ 0.3 \% \mathrm{~L} \text { typ. } \end{array}$	$\approx 400 \mathrm{~Hz}$	$10.612 \mathrm{M} \Omega$	$\begin{gathered} 3 \mathrm{to} \\ 50 \mathrm{mV} \end{gathered}$
600mV	$\begin{gathered} 0 \text { to } \\ 600.00 \mathrm{mV} \end{gathered}$	$\begin{gathered} 60.00 \mathrm{to} \\ 600.00 \mathrm{mV} \end{gathered}$	0.01 mV		$\begin{gathered} 0.8 \% \mathrm{~L} \\ +0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \quad \pm 30 \mathrm{D} \end{gathered}$		10 Hz to 50 kHz	$10.9 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 500 \mathrm{mV} \end{gathered}$
6 V	$\begin{gathered} 0 \text { to } \\ 6.0000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0.6 \text { to } \\ 6.0000 \mathrm{~V} \end{gathered}$	0.0001 V		$\begin{gathered} 0.5 \% \mathrm{~L} \\ +0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \quad \pm 25 \mathrm{D} \end{gathered}$	$\begin{gathered} \text { at } 100 \mathrm{~Hz} \\ 0.7 \% \mathrm{~L} \text { typ. } \end{gathered}$	10 Hz to 100 kHz	$10.9 \mathrm{M} \Omega$	3 to 5V
60V	$\begin{gathered} 0 \text { to } \\ 60.000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.000 \text { to } \\ & 60.000 \mathrm{~V} \end{aligned}$	0.001V			$\begin{gathered} \text { at } 150 \mathrm{~Hz} \\ 1.8 \% \mathrm{~L} \text { typ. } \end{gathered}$		$10.082 \mathrm{M} \Omega$	$\begin{aligned} & 3 \text { to } \\ & 50 \mathrm{~V} \end{aligned}$
600V	$\begin{gathered} 0 \text { to } \\ 600.00 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 60.00 \text { to } \\ & 600.00 \mathrm{~V} \end{aligned}$	0.01 V			$\begin{aligned} & \text { at } 300 \mathrm{~Hz} \\ & 30 \% \mathrm{~L} \text { typ. } \end{aligned}$		$10.008 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 500 \mathrm{~V} \end{gathered}$
$1000 V^{3)}$	$\begin{gathered} 0 \text { to } \\ 1000.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 60 \text { to } \\ 1000.0 \mathrm{~V} \end{gathered}$	0.1V					$10.008 \mathrm{M} \Omega$	$\begin{aligned} & 1.42 \text { to } \\ & 1000 \mathrm{~V} \end{aligned}$

1) See the typical curve of the 300 Hz .
2) This range is accessible only with the Range key - Input impedance: approx. $10.6 \mathrm{M} \Omega / / 50 \mathrm{pF}$
3) The LCD indicates +OL above +1050V, -OL below -1050 V or above 1050 VRMS .
4) From 1 kHz , the measurement must exceed 15% of the range.

Secondary measurements and displays: FREQ (AC coupling), MAX, MIN, AVG, PEAK

Technical characteristics of the MTX 3291 (continued)

Currents

Three possible modes: DC, AC, AC+DC
In DC mode, you can measure a direct current or the DC component of an alternating current.
In the AC and AC+DC modes, you can measure the true RMS (TRMS) value of an alternating current with/without its direct component (no capacitive coupling in "DC" mode).

DC current
Particular reference conditions:
$600 \mu \mathrm{~A}$ and 6 mA ranges: Measuring a strong current for a long time may cause a temperature rise of some components. In this case, it is necessary to wait some time for the metrological characteristics specified in these ranges.

Range	Operating range	Specified measurement range	Resolution	Uncertainty (\pm)	Voltage drop	Protection
$600 \mu \mathrm{~A}$	0 to $600.00 \mu \mathrm{~A}$	0.02 to $600.00 \mu \mathrm{~A}$	$0.01 \mu \mathrm{~A}$	$1 \% \mathrm{~L} \pm 25 \mathrm{D}$	$10 \mathrm{mV} / \mathrm{mA}$	
6 mA	0 to 6000.0 mA	0.002 to 6.0000 mA	$0.1 \mu \mathrm{~A}$	$0.8 \% \mathrm{~L} \pm 25 \mathrm{D}$	$25 \mathrm{mV} / \mathrm{mA}$	
60 mA	0 to 60.000 mA	0.020 to 60.000 mA	0.001 mA	$0.8 \% \mathrm{~L} \pm 20 \mathrm{D}$	$3 \mathrm{mV} / \mathrm{mA}$	Fuse
600 mA	0 to 600.00 mA	0.20 to 600.00 mA	0.01 mA	$0.8 \% \mathrm{~L} \pm 20 \mathrm{D}$	$0.58 \mathrm{mV} / \mathrm{mA}$	$11 \mathrm{~A} / 1000 \mathrm{~V}$ $>20 \mathrm{kA}$
6 A	0 to 6.0000 A	0.2000 to 6.0000 A	0.0001 A	$0.8 \% \mathrm{~L} \pm 20 \mathrm{D}$	$0.05 \mathrm{~V} / \mathrm{A}$	
$10 \mathrm{~A} / 20 \mathrm{~A}$	0 to 20.000 A	0.200 to 20.000 A	0.001 A	$0.8 \% \mathrm{~L} \pm 20 \mathrm{D}$	$0.05 \mathrm{~V} / \mathrm{A}$	

The display indicates OL above 19.99A. The symbol blinks and a beep sounds above 10A.
(*) Acceptable overload: 10A to 20A for 30s max. with a pause of 5 min between 2 measurements. Ambient temp. $35^{\circ} \mathrm{C}$ max.
Secondary measurements and displays: MAX, MIN, AVG

Technical characteristics of the MTX 3291 (continued)

AAC RMS current

Range	Operating range	Specified measurement range	Resolution	Uncertainty (\pm) 40 Hz to 20 kHz (**)	Peak factor	Voltage drop	Protection
600 ${ }^{\text {A }}$	$\begin{gathered} 0 \text { to } \\ 600.00 \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} 60 \text { to } \\ 600.00 \mu \mathrm{~A} \end{gathered}$	$0.01 \mu \mathrm{~A}$	$\begin{gathered} 1.5 \% ~ L \\ \pm 30 \mathrm{D} \end{gathered}$	$\begin{gathered} 2.6 \text { to } \\ 500 \mu \mathrm{~A} \end{gathered}$	$10 \mathrm{mV} / \mu \mathrm{A}$	$\begin{gathered} \text { Fuse } \\ 11 \mathrm{~A} \\ / 1000 \mathrm{~V} \\ >20 \mathrm{kA} \end{gathered}$
6.000 mA	$\begin{gathered} 0 \text { to } \\ 6.0000 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 0.6000 \text { to } \\ & 6.0000 \mathrm{~mA} \end{aligned}$	$0.1 \mu \mathrm{~A}$	$\begin{gathered} 1.2 \% \mathrm{~L}+[0.08 \% \\ \mathrm{x}(\mathrm{FkHz}-1)] \mathrm{L} \\ \pm 25 \mathrm{D} \end{gathered}$	$\begin{aligned} & 2.6 \text { to } \\ & 5 \mathrm{~mA} \end{aligned}$	$25 \mathrm{mV} / \mathrm{mA}$	
60mA	$\begin{gathered} 0 \text { to } \\ 60.000 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 6.000 \text { to } \\ 60.000 \mathrm{~mA} \end{gathered}$	0.001 mA	$\begin{gathered} 1 \% \mathrm{~L}+[0.08 \% \\ \times(\mathrm{FkHz-1})] \mathrm{L} \\ \pm 25 \mathrm{D} \end{gathered}$	$\begin{aligned} & 2.6 \text { to } \\ & 50 \mathrm{~mA} \end{aligned}$	$3 \mathrm{mV} / \mathrm{mA}$	
600mA	$\begin{gathered} 0 \text { to } \\ 600.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 60.00 \text { to } \\ 600.00 \mathrm{~mA} \end{gathered}$	0.01 mA		$\begin{gathered} 2.6 \text { to } \\ 500 \mathrm{~mA} \end{gathered}$	$0.58 \mathrm{mV} / \mathrm{mA}$	
6A	$\begin{gathered} 0 \text { to } \\ 6.0000 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0.6000 \text { to } \\ & 6.000 \mathrm{~A} \end{aligned}$	0.0001A	$\begin{gathered} 1 \% \mathrm{~L}+[0.1 \% \\ \mathrm{x}(\mathrm{FkHz-1)]} \mathrm{~L} \\ \pm 25 \mathrm{D} \end{gathered}$	2.8 to 5A	0.05V/mA	
$10 \mathrm{~A} / 20 \mathrm{~A}$ (*)	$\begin{gathered} 0 \text { to } \\ 20.000 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 1.000 \text { to } \\ & 20.000 \mathrm{~A} \end{aligned}$	0.001A	$\begin{gathered} 1.2 \% \mathrm{~L}+[0.1 \% \\ \mathrm{x}(\mathrm{FkHz-1)]} \mathrm{~L} \\ \pm 25 \mathrm{D} \end{gathered}$	3.7 to 8A	0.05V/mA	

The display indicates OL above 19.99A. The symbol blinks and a beep sounds above 10A.
Secondary measurements and displays: FREQ (AC coupling), MAX, MIN, AVG, PEAK
(*) Acceptable overload: 10A to 20A for 30s max. with a pause of 5 min between 2 measurements. Ambient temp. $35^{\circ} \mathrm{C}$ max.
$(* *)$ Additional uncertainty with the 300 Hz filter.
$A A C+D C$ TRMS current
Warning: the sum $A C+D C$ must never exceed the range, 600 mA , or 60 mA , or 6 mA , or $600 \mu \mathrm{~A}$ or 6 A , or 10 A , as the case may be.
The AC component must represent at least 5\% of the amplitude of the AC+DC total for it to be possible to measure it.

Range	Operating range	Specified measurement range	Resolution	Uncertainty (\pm) 40 Hz to 20 kHz (**)	Peak factor	Voltage drop	Protection	Range
$600 \mu \mathrm{~A}$	$\begin{gathered} \hline 0 \text { to } \\ 600.00 \mu \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 60 \text { to } \\ 600.00 \mu \mathrm{~A} \\ \hline \end{gathered}$	$0.01 \mu \mathrm{~A}$	$\begin{aligned} & 1.5 \% \mathrm{~L} \\ & \pm 20 \mathrm{D} \\ & \hline \end{aligned}$	$\pm 20 \mathrm{D}$	$\begin{gathered} 2.6 \text { to } \\ 500 \mu \mathrm{~A} \end{gathered}$	$10 \mathrm{mV} / \mu \mathrm{A}$	$\begin{gathered} \text { Fuse } \\ 11 \mathrm{~A} / 1000 \\ \mathrm{~V} \\ >20 \mathrm{kA} \end{gathered}$
6mA	$\begin{gathered} 0 \text { to } \\ 6.0000 \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} 0.6000 \text { to } \\ 6.0000 \mathrm{~mA} \end{gathered}$	$0.1 \mu \mathrm{~A}$	$\begin{gathered} 1 \% \mathrm{~L}+[0.08 \% \mathrm{x} \\ (\mathrm{FkHz}-1)] \mathrm{L} \\ \pm 25 \mathrm{D} \end{gathered}$	$\pm 15 \mathrm{D}$	2.6 to 5 mA	$25 \mathrm{mV} / \mathrm{mA}$	
60mA	$\begin{gathered} \hline 0 \text { to } \\ 60.00 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{gathered} 6.000 \mathrm{to} \\ 60.000 \mathrm{~mA} \\ \hline \end{gathered}$	0.001 mA	$\begin{gathered} 1 \% \mathrm{~L}+[0.08 \% \mathrm{x} \\ (\mathrm{FkHz}-1) \mathrm{L} \\ \pm 25 \mathrm{D} \end{gathered}$		$\begin{aligned} & 2.6 \text { to } \\ & 50 \mathrm{~mA} \\ & \hline \end{aligned}$	$3 \mathrm{mV} / \mathrm{mA}$	
600mA	$\begin{gathered} 0 \text { to } \\ 600.00 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{gathered} 60.00 \mathrm{to} \\ 600.00 \mathrm{~mA} \\ \hline \end{gathered}$	0.01 mA			$\begin{gathered} 2.6 \mathrm{to} \\ 500 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 0.58 \mathrm{mV} / \mathrm{m} \\ \mathrm{~A} \\ \hline \end{array}$	
6A	$\begin{gathered} 0 \text { to } \\ 6.0000 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0.6000 \text { to } \\ & \text { 6.000A } \end{aligned}$	0.0001 A	$\begin{gathered} 1 \% \mathrm{~L}+[0.1 \% \mathrm{x} \\ \text { (FkHz-1)]L} \\ \pm 25 \mathrm{D} \end{gathered}$		2.8 to 5A	$0.05 \mathrm{~V} / \mathrm{mA}$	
10A/20A (*)	$\begin{gathered} 0 \text { to } \\ 20.00 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0.600 \text { to } \\ & 20.000 \mathrm{~A} \end{aligned}$	0.001A	$\begin{gathered} 1.2 \% ~ L+[0.1 \% x \\ \text { (FkHz-1)]L } \\ \pm 25 \mathrm{D} \end{gathered}$		3.7 to 8A	$0.05 \mathrm{~V} / \mathrm{mA}$	

The display indicates OL above 19.99A. The symbol blinks and a beep sounds above 10A.
(*) Acceptable overload: 10A to 20A for 30 s max. with a pause of 5 min between 2 measurements. Ambient temp. $35^{\circ} \mathrm{C}$ max.
Secondary measurements and displays: FREQ (AC coupling), MAX, MIN, AVG, PEAK $(* *)$ Additional uncertainty with the 300 Hz filter.

Technical characteristics of the MTX 3291 (continued)

Frequency

Main frequency
In this setting, you can measure the frequency of a voltage. measurement

Particular reference conditions: $150 \mathrm{mV}<\mathrm{U}<600 \mathrm{~V}$
When the switch is set to Hz , the 300 Hz filter is not in service.
Protection: 1414 Vpk

Range	Operating range	Specified measurement range	Resolution	Intrinsic error
60 Hz	10.00 to 60.00 Hz	10.00 to 60.00 Hz	0.01 Hz	0.1\% L $\pm 1 \mathrm{D}$
600 Hz	10.0 to 600.0 Hz	10.0 to 600.0 Hz	0.1 Hz	
6 kHz	0 to 6.000 kHz	0.010 to 6.000 kHz	0.001 kHz	
60 kHz	0 to 60.00 kHz	0.01 to 60.00 kHz	0.01 kHz	
600 kHz	0 to 200.0 kHz	0.1 to 200.0 kHz	0.1 kHz	

Below 10 Hz , or if the signal detection level is inadequate, the reading is forced to zero.
(6) The measured period in ms is available on the second display unit.

Secondary frequency measurement

You can measure the frequency and magnitude of a voltage or of a current simultaneously.

Same accuracy as in the "Hz" setting
Particular reference conditions:
$150 \mathrm{mV}<\mathrm{U}<600 \mathrm{~V}$ $0.15 \mathrm{~A}<1<10 \mathrm{~A}$
Max. frequency measurable in volts: 100 kHz
(except 60 mV range $\rightarrow 400 \mathrm{~Hz}$ and 600 mV range $\rightarrow 50 \mathrm{kHz}$)
Max. frequency measurable in amperes: 20 kHz
When the switch is set to VLowZ, Volts or Ampere, if the 300 Hz filter is activated, the measurable frequency remains within the limits of the PB of the filter.
Below 10 Hz , or if the signal detection level is inadequate, the reading is forced to
\qquad

Technical characteristics of the MTX 3291 (continued)

Resistance

Ohmmeter In this setting, the user can measure a resistance.

Particular reference conditions:

The (+COM) input must not have been overloaded following the accidental application of a voltage to the input terminals with the switch set to Ω or T°. If this happens, the return to normal may take about ten minutes.
Protection: 1414 Vpk

Range	Specified measurement range	Resolution	Uncertainty	Measurement current	Open-circuit voltage
600Ω	0 to 600.00 ${ }^{(*)}$	0.01Ω	0.2\% L $\pm 20 \mathrm{D}$	$\approx 1 \mathrm{~mA}$	$<5 \mathrm{~V}$
$6 \mathrm{k} \Omega$	0 to $6.0000 \mathrm{k} \Omega$	$0.0001 \mathrm{k} \Omega$	0.2\% L $\pm 20 \mathrm{D}$	$\approx 126.6 \mu \mathrm{~A}$	
$60 \mathrm{k} \Omega$	0 to $60.000 \mathrm{k} \Omega$	$0.001 \mathrm{k} \Omega$		$\approx 12.6 \mu \mathrm{~A}$	
600k Ω	0 to $600.00 \mathrm{k} \Omega$	$0.01 \mathrm{k} \Omega$		$\approx 1.26 \mu \mathrm{~A}$	
$6 \mathrm{M} \Omega$	0 to $6.0000 \mathrm{M} \Omega$	$0.0001 \mathrm{M} \Omega$	1.5\% L $\pm 30 \mathrm{D}$	$\approx 240 \mathrm{nA}$	
$60 \mathrm{M} \Omega$	0 to $60.000 \mathrm{M} \Omega$	$0.001 \mathrm{M} \Omega$	$3 \% \mathrm{~L} \pm 30 \mathrm{D}$	$\approx 29 \mathrm{nA}$	

(*) REL measurements

Capacity

Capacitance meter In this setting, the user can measure the capacitance of a capacitor.

Range	Operating range	Specified measurement range	Resolution	Intrinsic error	Measurement current	Measurement time
6 nF	0.100 to 6.000 nF	0.100 to 6.000 nF	0.001 nF	$2 \% \mathrm{~L} \pm 30 \mathrm{D}$	$\approx 1.26 \mu \mathrm{~A}$	$\approx 400 \mathrm{~ms}$
60 nF	0 to 60.00 nF	0 to 60.00 nF	0.01 nF	$1 \% \mathrm{~L} \pm 8 \mathrm{D}$	$\approx 1.26 \mu \mathrm{~A}$	$\approx 400 \mathrm{~ms}$
600 nF	0 to 600.0 nF	0 to 600.0 nF	0.1 nF	$1 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1.26 \mu \mathrm{~A}$	$\approx 400 \mathrm{~ms}$
$6 \mu \mathrm{~F}$	0 to $6.000 \mu \mathrm{~F}$	0 to $6.000 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	$1 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 12.6 \mu \mathrm{~A}$	$\approx 0.125 \mathrm{~s} / \mu \mathrm{F}$
$60 \mu \mathrm{~F}$	0 to $60.00 \mu \mathrm{~F}$	0 to $60.00 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$	$1 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 126.6 \mu \mathrm{~A}$	$\approx 0.125 \mathrm{~s} / \mu \mathrm{F}$
$600 \mu \mathrm{~F}$	0 to $600.0 \mu \mathrm{~F}$	0 to $600.0 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$	$3 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1 \mathrm{~mA}$	$\approx 0.125 \mathrm{~s} / \mu \mathrm{F}$
6 mF	0 to 6.000 mF	0 to 6.000 mF	$1 \mu \mathrm{~F}$	$4 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1 \mathrm{~mA}$	$\approx 17 \mathrm{~s} / \mathrm{mF}$
60 mF	0 to 60.00 mF	0 to 60.00 mF	$10 \mu \mathrm{~F}$	$6 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1 \mathrm{~mA}$	$\approx 17 \mathrm{~s} / \mathrm{mF}$

The use of wires that are very short and shielded is strongly recommended. Protection: 1414 Vpk

Technical characteristics of the MTX 3291 (continued)

Diode test

Range	Resolution	Accuracy	Open-circuit voltage	Measurement current
3 V	0.1 mV	$1 \% \mathrm{~L} \pm 30 \mathrm{D}$	$<5 \mathrm{~V}$	$<1.1 \mathrm{~mA}$

Audible signal triggered if $<40 \mathrm{mV} \pm 10 \mathrm{mV}$
Protection: 1414 Vpk

Audible continuity

Range	Resolution	Accuracy	Open-circuit voltage	Measurement current	Protection
600Ω	0.01Ω	$0.2 \% \mathrm{~L} \pm 20 \mathrm{D}$	$<5 \mathrm{~V}$	$<1.1 \mathrm{~mA}$	1414 Vpk

Response time: <100ms
Triggering threshold: $<30 \Omega \pm 5 \Omega$
Protection: 1414 Vpk

Clamp

You can measure a current using various current clamps and obtain a direct reading of the current by selecting the correct transformation ratio, which must be the same as that of the clamp.
If the signal detection level is insufficient, the value is forced to "-- \qquad -"
The input impedance is approximately $10 \mathrm{M} \Omega$.
A. Add the error of the clamp to the intrinsic error of the multimeter, specified in the tables below.

DC current

Range Ratio		600mA	6A	60A	600A	6000A
$1 \mathrm{mV} / \mathrm{A}$	Resolution			0.01A	0.1A	1A
	Accuracy			0.5\% L $\pm 2 \mathrm{D}$	0.5\% L $\pm 2 \mathrm{D}$	0.05\% L $\pm 2 \mathrm{D}$
$10 \mathrm{mV} / \mathrm{A}$	Resolution		0.001 A	0.01 A	0.1 A	
	Accuracy		0.5\% L $\pm 2 \mathrm{D}$	0.5\% L $\pm 2 \mathrm{D}$	0.05\% L $\pm 2 \mathrm{D}$	
$100 \mathrm{mV} / \mathrm{A}$	Resolution	0.1 mA	0.001 A	0.01A		
	Accuracy	0.5\% L $\pm 2 \mathrm{D}$	0.5\% L $\pm 2 \mathrm{D}$	0.05\% L $\pm 2 \mathrm{D}$		
$1000 \mathrm{mV} / \mathrm{A}$	Resolution	0.1 mA	0.001A			
	Accuracy	0.5\% L $\pm 2 \mathrm{D}$	0.05\% L $\pm 2 \mathrm{D}$			

Secondary measurements and displays: MAX, MIN, AVG and transformation ratio of the sensor

Technical characteristics of the MTX 3291 (continued)

AAC RMS current	Range Ratio		600mA	6A	60A	600A	6000A
		Resolution			0.01A	0.1A	1A
	$1 \mathrm{mV} / \mathrm{A}$	Accuracy			$\begin{gathered} 1.5 \% \mathrm{~L} \pm 5 \mathrm{D} \\ (\mathrm{BW} \approx 400 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 1 \% \mathrm{~L}+0.25 \% \\ \mathrm{x}[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 5 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 50 \mathrm{kHz}) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \% \mathrm{~L}+0.18 \% \\ \times[F(\mathrm{kHz})-1] \mathrm{L} \\ \pm 3 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 100 \mathrm{kHz}) \\ \hline \end{gathered}$
		Resolution		0.001 A	0.01A	0.1A	
	10mV/A	Accuracy		$\begin{gathered} 1.5 \% \mathrm{~L} \pm 5 \mathrm{D} \\ (\mathrm{BW} \approx 400 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 1 \% \mathrm{~L}+0.25 \% \\ \mathrm{x}[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 5 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 50 \mathrm{kHz}) \end{gathered}$	$\begin{gathered} 0.5 \% \mathrm{~L}+0.18 \% \\ \times[F(\mathrm{kHz})-1] \mathrm{L} \\ \pm 3 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 100 \mathrm{kHz}) \end{gathered}$	
		Resolution	0.1 mA	0.001 A	0.01A		
	$100 \mathrm{mV} / \mathrm{A}$	Accuracy	$\begin{gathered} 1.5 \% \mathrm{~L} \pm 5 \mathrm{D} \\ (\mathrm{BW} \approx 400 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 1 \% \mathrm{~L}+0.25 \% \\ \mathrm{x}[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 5 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 50 \mathrm{kHz}) \end{gathered}$	$\begin{gathered} 0.5 \% ~ L+0.18 \% \\ \times[F(\mathrm{kHz})-1] \mathrm{L} \\ \pm 3 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 100 \mathrm{kHz}) \end{gathered}$		
		Resolution	0.1 mA	0.001A			
	1000mV/A	Accuracy	$\begin{gathered} 1 \% \mathrm{~L}+0.25 \% \\ \mathrm{x}[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 5 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 50 \mathrm{kHz}) \end{gathered}$	$\begin{gathered} 0.5 \% \mathrm{~L}+0.18 \% \\ \mathrm{x}[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 3 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 100 \mathrm{kHz}) \end{gathered}$			
	Peak factor 3		@ 500mA	@ 5A	@ 50A	@ 500A	@ 5000A

From 1 kHz , the measurement must exceed 15% of the range
Secondary measurements and displays: MAX, MIN, AVG and transformation ratio of the sensor

300 Hz filter: if the filter is active, see 300 Hz filter curve for the additional uncertainty.
$A A C+D C$ TRMS current

Ratio Range		600mA	6A	60A	600A	6000A
$1 \mathrm{mV} / \mathrm{A}$	Resolution			0.01A	0.1A	1A
	Accuracy			$\begin{gathered} 1.5 \% \mathrm{~L} \pm 15 \mathrm{D} \\ (\mathrm{BW} \approx 400 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 0.8 \% \mathrm{~L}+0.18 \% \\ \mathrm{x}[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 15 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 50 \mathrm{kHz}) \end{gathered}$	$\begin{gathered} 0.5 \% \mathrm{~L}+0.18 \% \\ \mathrm{x}[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 13 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 100 \mathrm{kHz}) \end{gathered}$
$10 \mathrm{mV} / \mathrm{A}$	Resolution		0.001A	0.01A	0.1 A	
	Accuracy		$\begin{gathered} 1.5 \% \mathrm{~L} \pm 5 \mathrm{D} \\ (\mathrm{BW} \approx 400 \mathrm{~Hz}) \end{gathered}$	$\begin{array}{\|c} \hline 0.8 \% \mathrm{~L}+0.18 \% \\ \mathrm{x}[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 15 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 50 \mathrm{kHz}) \\ \hline \end{array}$	$\begin{gathered} 0.5 \% \mathrm{~L}+0.18 \% \\ \mathrm{x}[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 13 \mathrm{D} \\ \text { (BW: } 10 \mathrm{~Hz} \text { to } \\ 100 \mathrm{kHz} \end{gathered}$	
$100 \mathrm{mV} / \mathrm{A}$	Resolution	0.1 mA	0.001A	0.01A		
	Accuracy	$\begin{gathered} 1.5 \% \mathrm{~L} \pm 5 \mathrm{D} \\ (\mathrm{BW} \approx 400 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 0.8 \% \mathrm{~L}+0.18 \% \\ \times[\mathrm{F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 15 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 50 \mathrm{kHz}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.5 \% \mathrm{~L}+0.18 \% \\ \times[\mathrm{F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 13 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 100 \mathrm{kHz} \\ \hline \end{gathered}$		
$1000 \mathrm{mV} / \mathrm{A}$	Resolution	0.1 mA	0.001A			
	Accuracy	$\begin{gathered} 0.8 \% \mathrm{~L}+0.18 \% \\ \times[\mathrm{F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 15 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 5 \mathrm{kHz}) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \% \mathrm{~L}+0.18 \% \\ \times[\mathrm{F}(\mathrm{kHz})-1] \mathrm{L} \\ \pm 13 \mathrm{D} \\ (\mathrm{BW}: 10 \mathrm{~Hz} \text { to } \\ 100 \mathrm{kHz} \\ \hline \end{gathered}$			
Peak factor 3		@ 500mA	@ 5A	@ 50A	@ 500A	@ 5000A

From 1 kHz , the measurement must exceed 15% of the range
Secondary measurements and displays: MAX, MIN, AVG and transformation ratio of the sensor
300 Hz filter: if the filter is active, see 300 Hz filter curve for the additional uncertainty.

Find Quality Products Online at: www.GlobalTestSupply.com

Technical characteristics of the MTX 3291 (continued)

TemperaturePt100/Pt1000	The user can measure the temperature by means of a Pt100/Pt1000 sensor.				
	Range	Measurement current	Resolution	Accuracy	Protection
	$-200^{\circ} \mathrm{C}$ to $+800^{\circ} \mathrm{C}$	$\begin{array}{cc} <1 \mathrm{~mA} & (\mathrm{Pt} 100) \\ <0.1 \mathrm{~mA} & (\mathrm{Pt} 1000) \end{array}$	$0.1{ }^{\circ} \mathrm{C}$	$0.1 \% \mathrm{~L} \pm 1^{\circ} \mathrm{C}$	1414 Vpk
	"Active" protection by PTC thermistor Display in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ possible				
Peak					
	Add $1 \% \mathrm{~L}+30 \mathrm{D}$ to obtain the accuracy corresponding to the function and the range.				
	Fmax $1 \mathrm{kHz}(1 \mathrm{~ms})$ Protection 1414 Vpk				
SURV					
MIN, MAX, AVG	Add $0.2 \% \mathrm{~L}+2 \mathrm{D}$ to obtain the accuracy corresponding to the function and the range. Acquisition time of the extrema approximately 100 ms Protection 1414 Vpk				
Resistive power	Display of the the installation The function Range Resolution Accuracy: Max. measure Protection Unit of display	istive power with d saved in memory rmined is: voltage	pect to a using the asured AC AC and A V accuracy VAC+DC Vpk	ence resist key (600 voltage) ${ }^{2}$ C in \%)	measured on e default) f
Duty cycle	Display of the "AC+DC" mod DC+ duty cyc DC- Duty cycl Resolution Minimum dura Maximum dur Minimum dura Nominal rang Sensitivity (10 Absolute erro cycle, express Protection	asurement in \%	logical - θ \% S s $\mu \mathrm{s}$ [5kHz] 95\% typic $\%$ of the ra $\%$ of the ran 1\%+0.045 5\%+0.06 Vpk	TTL, CMO Freq < 1 kH Freq >1kHz RC-50)], Fr RC-50)], Fr	in $\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$

Technical characteristics of the MTX 3291 (continued)

Pulse width$(\Omega)(\square)$	Depending on frequency counter triggering conditions.	
	Resolution $10 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
	Minimum pulse width $\quad 100 \mathrm{~s}$	100 s
	Accuracy $\quad 0.1 \% \pm 10 \mu \mathrm{~s}$	0.1\% $\pm 10 \mu \mathrm{~s}$
	Maximum duration of a period $\quad 1.25 \mathrm{~s}(0.8 \mathrm{~Hz})$	$1.25 \mathrm{~s}(0.8 \mathrm{~Hz})$
	Triggering threshold $\quad 20 \%$ of the range except	20% of the range except 1000 VAC range
	This threshold is: positive in \rfloor, negative in	positive in Ω, negative in 〕.
	Additional error on the measurement due to the slope at the zero crossing: See §. Measurement of duty cycle.	
	Protection 1414 Vpk	See §. Measurement of duty cycle. 1414 Vpk
dBm	Display of the measurement in dBm with respect to a resistance reference chosen by the user from among $50 \Omega, 75 \Omega, 90 \Omega$, and 600Ω, (default value 600Ω)	
	Resolution 0.1 dBm	0.1 dBm
	Absolute error in dBm 0.09 x relative error VAC	0.09 x relative error VAC expressed in \%
	Additional calculation error 0.1 dBm	0.1 dBm
	Measurement range 10 mV to 1000 V	10 mV to 1000 V
	Protection 1414 Vpk	1414 Vpk
Operation of the audible beep	Beep reporting a valid key	High-pitched sound
	Beep reporting an invalid key	Low-pitched sound
	Successive beeps reporting an overshoot of the danger threshold (alarm)	High-pitched sound
	Successive beeps reporting recording of the MAX, MIN, PEAK	High-pitched sound
	Successive beeps (alarm) \rightarrow current $>10 \mathrm{~A}$	High-pitched sound
	Continuity measurement	Mediumpitched sound

Technical characteristics of the MTX 3291 (continued)

General characteristics

Environmental	Altitude	$<2000 \mathrm{~m}$
conditions	Reference range	$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
	Specified range of use	$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
	Influence of temperature	see \S. Influences
	Relative humidity	0% to 80% from $0^{\circ} \mathrm{C}$ to $31^{\circ} \mathrm{C}$
		0% to 70% from $40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
	limited to 70% for the 6 and 60Ω ranges	
	Dust- and water-tightness	IP67 (in the event of immersion, under 1 m of
	water for 30 mn, it is necessary to let the water flow off or to let the unit dry before putting it back into service).	
	Storage range	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

The multimeter is powered by primary or rechargeable batteries:

- Batteries, $4 \times 1.5 \mathrm{~V}$ nominal LR6, Alkaline

Life in VDC:
MTX3290: $\approx 200 \mathrm{~h}$
MTX3291: $\approx 300 \mathrm{~h}$

- Rechargeable batteries, $4 \times 1.2 \mathrm{~V}, \mathrm{~A}-\mathrm{A}, \mathrm{Ni}-\mathrm{MH}$ LSD, 2400 mAh

Life in VDC:
MTX3290: $\approx 140 \mathrm{~h}$
MTX3291: $\approx 210 \mathrm{~h}$
The refresh rate of:

- the display unit is 200 ms
- the bargraph is 100 ms .

C

Security
According to NF EN 61010-1:

- Insulation class 2
- Degree of pollution 2
- Use indoor
- Altitude <2000m

Measurement category of the "measurements"
MTX3290: 600V CAT III and 300V CAT IV with respect to earth
MTX3291: 1000V CAT III and 600V CAT IV with respect to earth
CEM This instrument is designed in conformity with the EMC standards in force and its compatibility has been tested in accordance with the following standards:

- Emissions (cl. A) and Immunity

NF EN 61326-1

Mechanical characteristics

Housing

- Dimensions
- Mass
- Materials
- Dust- and water-tightness
$196 \times 90 \times 47.1 \mathrm{~mm}$
570 g
Polycarbonate (PC)
IP67, according to NF EN 60529

Supply

with the instrument

- Directions for operation in 5 languages, on mini CD
- SX-DMM software on mini CD (MTX 3291, only)
- Getting started guide
- 1 set of safety leads (red and black) with double insulation probe tip ($\varnothing 4 \mathrm{~mm}$) 1000V, CAT III, 20A
- 1 set of 4 AA/R6 batteries
- 1 statement of manufacturer's measurements
- Optical USB communication lead (MTX 3291, only)
- 1 carrying case (MTX 3291, only)
optional
- Current clamps (see table below)
- Two-wire Pt100 temperature probe (HX0091)
- Two-wire Pt1000 temperature probe (HA1263)
- Metrology software for Windows (P01196770)
- Set of 4 rechargeable batteries (external charger) (HX0051B)
- External charger for $4 \mathrm{Ni}-\mathrm{MH}$ rechargeable batteries (HX0053)
- HV probe (SHT 40kV)
- CMS clamp (HX0064)
- Multifix adapter for DMM (P01102100Z)
spare • MTX 3291: Fuse, 11A, 10x38, 1000V - Fast - breaking capacity: >20kA MTX 3290: Fuse, 10A: 6x32-600V - Fast - breaking capacity: >50kA (Get in touch with our Manumesure Regional Technical Centre).
- Kit of test accessories for DMM (P01295459Z)
- Carrying case with Multifix (HX0052B)

List of clamps set to 5 (0) mV/A	Ratio	To order
Miniflex MA100 from 0.5 to 3000 AAC 10 Hz to 20 kHz	1 or 10 or 100	P0112056X
Ampflex A100 from 0.5 to 3000 AAC 10 Hz to 20 kHz	1 or 10 or 100	P0112050X
MNXX or MN 73 clamps from 0.1 to 240 AAC 40 Hz to 10 kHz	10	P01120421
E3N-6N clamps from 0.05 to 80 AAC/DC DC to 8 kHz	1 or 10 or 100	P0112004XA
PACXX clamps from 0.2 to 1400 AAC/DC DC to 10 kHz	1 or 10	P0112006X/P0112007X

1-2015
X04065A02-Ed. 01

Find Quality Products Online at: www.GlobalTestSupply.com sales@GIobalTestSupply.com

