Optical Data-processing System
 QM-Data200 and Vision Unit

Promotes Smart Factory by Collecting and Managing Measurement Data.

Collects data in the inspection process swiftly and accurately, and increases a company's competitiveness based on detailed data analysis.
Optical data-processing system is what supports such a system configuration.
In addition, "MeasurLink" offers the "Quality Control IoT that Mitutoyo advocates."

Measurements that anyone can perform, and with less variation

Quality control based on data management system

2D Data Processing Unit QM-Data200

Faster, easier, and more accurate measurements with a projector and a microscope.

Vision System Retrofit for Microscopes Vision Unit
 Image processing, such as automatic edge detection, offers more

Solutions to issues

Issue	Solution
Many errors in handwritten	
measurement data	
Quality control based on	
data management system	

What is MeasurLink ${ }^{*}$?

MeasurLink is an IoT platform for quality management that realizes "Visualization of Quality" by enabling real-time data collection, centralized data management and implementing statistical process control from measuring instruments connected to the network. QM-Data200 and Vision Unit support you as an infrastructure system that undertakes the collection and management of measurement data from a projector and microscope.

Preventing defectives

Collects data from Digimatic gages on the network and performs statistical process control (SPC) to warn of possible generation of defectives.

Diagnosis by data analysis
Checking measurement results by accessing the
database and performing various analyses helps
investigate and resolve process performance concerns.

Simply start achieving loT

Find Quality Products Online at:

2D Data Processing Unit QM-Data200

Data Processing Unit with Easy Operation

Easy operation

A color LCD panel with high visibility is adopted for an interactive system that guides the operator according to screen
 instructions. This allows easy operation even for first-time users of the QM-Data200. This data processing unit is intended for production sites in various environments, adopting high durability sheet switches and proprietary electronic components.

Three screens selectable according to purpose

[Measurement procedure navigation screen], [Enlarged counter display], [Measurement result screen in the graphic display].
Selectable according to your purpose.

Experience measurement with the QM-Data200

The comprehensive key panels of the QM-Data200 make it easy for any operator to use. Simple operations help you concentrate on measurements.

Measurement example: Measure the distance between the centers of holes A and B.

1. Select the "circle-circle distance" measurement key from the pattern-measurement keys.

2. Determine each position (a1, a2, a3) on round hole A , following the measurement navigation procedure on the LCD.

3. The measurement result is displayed.

4. Next, the measurement navigation procedure for round hole B will be displayed. Determine each position ($\mathrm{b} 1, \mathrm{~b} 2, \mathrm{~b} 3$) in the same manner as in step (2).

USER MENU

In the User menu, the "Measurement command," "User macro," and "Part program" can be registered. (Up to 3 menus.)
You can register a "Part program" for each workpiece to measure, and customize an original system to best suit the operator's needs.
The registered user menus can be saved on a USB storage device, enabling a backup or sharing on multiple QM-Data200 units.
[USER MENU] key

Example of user menu registration

* A user macro is a measurement command created by the user, and is a combination of several standard QM-Data200 measurement commands. Note: Up to three user menus, from [USER1] to [USER3] , can be registered.

The coordinate entry format function (NP measurement)

In a measurement using the coordinate entry format, the coordinates calculated from the measurement data (coordinates of the center of a circle, etc.) are applied to data entry as one measuring point. For example, measurement of the pitch of a rectangular hole can be executed simply by selecting the [PITCH MEASUREMENT] key and [RECTANGULAR HOLE CENTER] in the coordinate entry format. Without calling up and re-calculating measurement result, [COORDINATE ENTRY FORMAT] can use with pattern and basic measurements.

Measurement example:

Measurement of a pitch circle whose perimeter intersects the three hole centers

1. Press [CIRCLE MEASUREMENT] to measure pitch circle C4.

Types of coordinate entry formats

3. Measure circle C1 (entry of four points). Likewise, measure circles C2 and C3.

4. Select the center of each circle (entry of four points).

Manual Operation Functions for Greater Measuring Efficiency

Navigation of measuring position

When using the Repeat function to execute a measurement procedure (part program) created with the teaching function*, the Repeat function guides the operator to the next measuring point. The number of repeat times for a part program can be specified.

[^0]
SYSTEM CONFIGURATION

Specifications

Rear panel of QM-Data200

*1 To denote your AC line voltage add the following suffixes (e.g. 264-155A) A for $120 \mathrm{~V}, \mathrm{C}$ for $110 \mathrm{~V}, \mathrm{D}$ for $220 \mathrm{~V}, \mathrm{E}$ for 240 V . No suffix is required for 100 V .
*2 Mitutoyo does not guarantee the operation of all commercial USB memories except for the following:
Mitutoyo recommends those USB memories made by SanDisk Corporation and that meet the following requirements.

- Those that have no security function such as encryption and fingerprint authentication
- Those that are not compliant with USB3.0

Dimensions

- Stand-mount type (Order No. 264-155A)

- Arm-mount type (Order No. 264-156A)

Mitutoyo

Key panel

Find Quality Products Online at: www.GIobalTestSupply.com

Creating the coordfnate systiem and measurement commands

Creating the coordinate system

Key menu

Coordinate system pattern 1 The line that passes the measuring point is the X axis, and the line that passes through another measuring point and intersects the X axis making a 90 -degree angle is the Y axis.

Coordinate system pattern 3 The line that passes through the measuring point is the X axis, and the intersection with another line is the origin.

3 Coordinate system handling Save, recall and Reset the coordinate system

Compensation of plane Reduce the error caused by the inclination of workpiece setting. (effectively used by measuring machines with a Z axis.)

Origin setting
Translate the coordinates horizontally until the measuring point is positioned as the origin. The displacement value can be entered directly.

Determining axis by line
Rotate the coordinate system in such a way that it becomes parallel to the measured line. (The origin is not transferred.)

Coordinate system saving Save the current set coordinate system information in a coordinate system memory. (The number of memories is 10.)

Coordinate system pattern 2 The line that passes through the measuring point is the X axis, and its midpoint is the origin.

Coordinate system pattern 4 The measuring point is the origin, and the line that passes through another measuring point is the X axis.

Determining axis by point
Rotate the X axis coordinate in such a
way that it passes through the measuring point. (The origin is not transferred.) The rotation angle can be entered directly.

Compensation of offset axis Rotate the coordinate system until the measuring point comes to the specified position. (The origin is not transferred.)

Coordinate system recall
Recall a coordinate system data from a coordinate system memory, then set it in the measuring target coordinate system.

Coordinate system resetting
Clear the current coordinate system setting, then reset it to the initial status just after power-on

Basic element measurement

Point
Coordinates (Multi-point processing
for a maximum of 100 points)

Angle and perpendicularity with
the X axis. (Multi-point processing
for a maximum of 100 points)

Circle
Center coordinates, diameter
roundness (Multi-point processing for a maximum of 100 points)

Rectangular hole Center coordinates, length, width
Center coordinates, major-axis diameter minor-axis diameter, angle with the X axis, departure from the X axis (Multipoint processing for a maximum of 100 points)

Slotted hole
Center coordinates, length, width, radius of slotted hole

Point-point distance Distance, Coordinates difference, radial difference

Intersection point and intersecting angle Intersection coordinates, intersecting angle, supplementary angle

Pattern measurement

Line-point distance
Perpendicular (shortest) distance

Line-circle distance
Center-center distance, longest
distance, shortest distance

Midpoint between points Coordinates of midpoint

Circle-circle distance Center-center distance, longest distance, shortest distance, difference between coordinates, radial difference

Midpoint between line and point Coordinates of midpoint

Center line between line-circle Angle with the X axis

Perpendicularity Perpendicularity

Parallelism
Parallelism

\boldsymbol{V}	
OTHER	

Circle-point distance Center-center distance, longest distance, shortest distance, difference between coordinates

Circle-circle tangent line Angle with the X axis

Midpoint between circles Coordinates of midpoint

Corner Diameter, radius of corner circle, center coordinates

Projected point
Coordinates of the point projected
on a line

Height
Height (distance between steps in the Z axis direction)

Point-circle tangent point Coordinates of tangent point

Plane-plane distance Distance between plane and plane (point)

[^0]: * Teaching function: When measuring more than one workpiece of the same form, the series of key operations performed in the measurement of the first workpiece can be stored as a part program.

