CONSTRUCTION MASTER® PRO USER'S Guide

For Models:

4065 Construction Master Pro v3.0 4080 Construction Master Pro Trig v3.0 44080 Construction Master Pro Desktop v3.0

Quality Products Online at:

www.GlobalTestSupply.com

sales@GlobalTestSupply

CONSTRUCTION MASTER® PRO v3.0 USER'S GUIDE

This User's Guide helps you solve common construction math and material estimation problems using the latest *Construction Master Pro* calculators—three of the most powerful feet-inch-fraction calculators to date:

The Construction Master Pro III Series -

- 1. Construction Master Pro v3.0 (#4065)
- 2. Construction Master Pro Trig v3.0 (#4080)
- 3. Construction Master Pro Desktop v3.0 (#44080)

IMPORTANT: The *Construction Master Pro Trig* does not have **Block**, **Concrete Footing**, **Drywall**, or **Length**, **Width**, and **Height** functions. These keys are replaced with standard trigonometric keys.

INTRODUCTION

The *Construction Master Pro* line includes the most advanced feetinch-fraction calculators *designed specifically for building pro's!*

The *Pro* calculators handle practically any problem involving measurements and can be used to save time, prevent errors, and accurately perform common building projects such as: estimating concrete volume, squaring-up foundations, framing roofs, ordering lumber, building stairs, walls, laying driveways, carpet or floor covering, figuring precise angle calculations, or simply working in feet-inchfractions or decimal feet!

Your Calculator Helps You Solve:

- Dimensional Math Problems
- Conversions Between Feet-Inch-Fractions, Decimal Feet, Decimal Inches, and Yards
- Imperial/Metric Conversions
- Problems Involving All Common Fractions 1/2" to 1/64"!
- Area/Volume Calculations
- Board Feet/Lumber Calculations
- Circle Calculations
- Column/Cone Area and Volume
- Compound Miter Cuts for Crown Moulding
- Material Estimations and Costs
- Polygons
- Rake-Walls
- Right Angle/Triangle Solutions
- Roofing Materials
- Stair Layout (Risers/Treads)
- Studs
- Weight/Volume Conversions

Pro and Desktop Models (NOT AVAILABLE ON TRIG MODEL #4080) Also Solve:

- Block/Bricks, Concrete Footings and Drywall
- Instant Square-up, Perimeter, Wall Area, Room Area and Volume

TABLE OF CONTENTS

GETTING STARTED	
KEY DEFINITIONS	8
Basic Operation Keys	
Convert Conv Key – Unit Conversions and Second Functions	s8
Memory and Storage Functions	9
Recall Rcl Key	
Dimensional Measurement Unit Keys	10
Area and Volume Keys (NOT AVAILABLE ON TRIG MODEL #4080).	11
Weight Keys	12
Construction Project Keys	
Block/Brick Keys (NOT AVAILABLE ON TRIG MODEL #4080)	
Circular/Arc Function Keys	13
Column/Cone Key	
Compound Miter/Crown Moulding Keys	
Drywall Keys (NOT AVAILABLE ON TRIG MODEL #4080)	16
Footing Keys (NOT AVAILABLE ON TRIG MODEL #4080)	16
Polygon Key	
Right Triangle/Roof Framing Keys	17
Hip/Valley and Jack Rafter Keys	
Rake-Wall Function	
Roof Materials/Covering Keys	
Stair Key	21
Studs	23
Trigonometric Keys (TRIG #4080 AND DESKTOP #44080	
MODELS ONLY)	
ENTERING DIMENSIONS	
Entering Linear Dimensions	
Entering Square/Cubic Dimensions	
SETTING FRACTIONAL RESOLUTION	27
Setting Fraction Resolution – Using the Preference	
Setting Mode	
Setting Fraction Resolution – Using Conv	
Converting Fractional Value to Different Resolution	
Setting Fixed/Constant Fractional Resolution	
CONVERSIONS (LINEAR, AREA, VOLUME)	
Linear Conversions	
Converting Feet-Inch-Fractions to Decimal Feet	
Converting Decimal Feet to Feet-Inch-Fractions	
Converting Fractional Inches to Decimal Inches	31

Converting Decimal Inches to Fractional Inches	31
Square Conversions	
Cubic Conversions	
PERFORMING BASIC MATH WITH DIMENSIONS	32
Adding Dimensions	32
Subtracting Dimensions	
Multiplying Dimensions	32
Dividing Dimensions	32
Percentage Calculations	33
MEMORY OPERATION	
Basic Cumulative Memory (M+)	
Permanent Storage Registers (M1 and M2)	34
PAPERLESS TAPE OPERATION	
EXAMPLES - USING THE CONSTRUCTION MASTER PRO	
LINEAR MEASUREMENT EXAMPLES	
Adding Linear Measurements	
Cutting Boards	
Window Measurement	
Calculating the Center Point	
AREA CALCULATIONS	
Square Area (x ²)	
Area of a Rectangular Room (LxW)	39
Using Multi-Function With Key to Find Area, Square-up and	
Perimeter (NOT AVAILABLE ON TRIG MODEL #4080)	
VOLUME CALCULATIONS	
Rectangular Containers (LxWxH)	40
Using the Multi-Function Height Key to Find Volume, Area,	
Square-Up, Perimeter, Wall Area and Room Area	
(NOT AVAILABLE ON TRIG MODEL #4080)	40
Volume of a Cylinder	
Volume of a Cone	41
WEIGHT/VOLUME CONVERSIONS	
Weight Conversions	
Weight per Volume/Volume Conversions	
BLOCKS/BRICKS (NOT AVAILABLE ON TRIG MODEL #4080)	
Number of Blocks, Based on Calculated Area	
Number of Blocks, Based on Entered Area	
Number of Blocks, Based on Calculated Perimeter	
Number of Blocks, Based on Length	
Number of "Face" Bricks	
Number of "Paver" Bricks	45

BOARD FEET - LUMBER ESTIMATION	46
Total Board Feet – With Dollar Cost	
Number of Board Feet Based on Entered Volume	46
CIRCLE AND ARC CALCULATIONS	47
Circumference and Area of a Circle	47
Arc Length – Degree and Diameter Known	47
Arc Length – Degree and Radius Known	47
Arc Calculations – Arc Length and Diameter Known	48
Arched/Circular Rake-Walls – Chord Length and Segme	nt Rise
Known	49
Arched Windows	50
COMPOUND MITER	51
Compound Miter Cuts	51
CONCRETE/PAVING	52
Volume of Concrete for a Driveway	52
Concrete Columns	53
Complex Concrete Volume	54
Polygon, Finding Angles Based on Entered Radius and	
Number of Sides	55
Concrete Footings (NOT AVAILABLE ON TRIG MODEL #4080)	56
Squaring-up a Foundation	57
DRYWALL (NOT AVAILABLE ON TRIG MODEL #4080)	58
Number of Drywall Sheets for a Given Area	58
Number of Drywall Sheets for a Given Length	58
GRADE/SLOPE	
Back-Fill on a Slope – Percent of Grade Known	59
RIGHT TRIANGLE AND ROOF FRAMING EXAMPLES	60
Roof Framing Definitions	61
Degree of Pitch	
Percent Grade	63
Pitch Ratio or Slope	63
Common Rafter Length	
Common Rafter Length – Pitch Unknown	
Angle and Diagonal (Hypotenuse)	65
Rise	65
Rise and Diagonal	65
Sheathing Cut	66
Regular Hip/Valley and Jack Rafters	66
Jack Rafters – Using Other Than 16 Inch On-Center	
Spacing	67

Irregular Hip/Valley and Jack Rafters – Descending, with	
On-Center Spacing Maintained	68
On-Center Spacing Maintained Irregular Hip/Valley and Jack Rafters – Ascending, with	
Jacks Mating at Hip/Valley	70
Rake-Wall – No Base	
Rake-Wall – With Base	
ROOFING MATERIALS	74
Roof Covering – Entering Pitch, Length and Width	74
Roof Covering - Entering Rise, Run (No Pitch) and Area	75
STAIR LAYOUT EXAMPLES	
Stair Layout Definitions	
Stairs – Given Only Floor-to-Floor Rise	78
Stairs – Given Only the Run	80
Stairs – Given Rise and Run	81
Stairs – Given Rise and Run, Using "Riser Limited" Function	
for Code Restrictions	82
Baluster Spacing	83
STUDS	
BASIC D:M:S AND TRIGONOMETRY EXAMPLES	84
Converting Degrees:Minutes:Seconds	
Time Calculations Using D:M:S	
TRIGONOMETRIC FUNCTIONS	
Converting Percent Grade to D:M:S	
Converting Tangent/Pitch to Angle	
Converting Roof Angle in Degrees to Pitch in Inches	
Angle – Rise and Hypotenuse Known	
APPENDIX A – DEFAULT SETTINGS	
APPENDIX B – PREFERENCE SETTINGS	
How to Set Preferences	
Accessing Preference Settings	
APPENDIX C – CARE INSTRUCTIONS	94
APPENDIX D – IMPORTANT NOTES FOR OWNERS OF	
PREVIOUS CONSTRUCTION MASTERS	95
APPENDIX E – ACCURACY/ERRORS, AUTO SHUT-OFF,	
BATTERIES, RESET	
ACCURACY/ERRORS	
Error Codes	
AUTO SHUT-OFF	
BATTERIES	
Replacing the Battery(ies)	
Battery Replacement Instructions	97

RESET KEY	97
APPENDIX F - AREA/VOLUME FORMULAS	98
AREA FORMULAS	
SURFACE AREA/VOLUME FORMULAS	99
REPAIR AND RETURN	
WARRANTY	101
INDEX	

GETTING STARTED

KEY DEFINITIONS

Basic Operation Keys

On/C	On/Clear — Turns power on. Pressing once clears the display. Pressing twice clears all temporary values.
Off	Turns all power off, clearing all non-permanent registers.
⊕ ⊖ ⊗ € ⊖	Arithmetic operation keys.
%	Four-function (+, -, x, \div) percent key. (See page 33 for examples.)
\bigcirc – \bigcirc and \bigcirc	Keys used for entering digits.
00	(DESKTOP ONLY) Enters "00" to save keystrokes (e.g., 1) (1) (10) to enter 100).
3	Backspace Key — Used to delete entries one key- stroke at a time (unlike the OVC function, which deletes the entire entry).

Convert Conv Key — Unit Conversions and Second Functions

The **Conv** key is to convert between measurement units or to access the second functions listed below:

Conv 🗙	Clear All — Clears all values, including Memory. Resets all permanent entries to default values (except Preference Settings which are retained).
	<u>Note</u> : Use only when necessary, as it resets all stored values to factory defaults. See page 88 for a listing of default values.
Conv %	x^2 — Squares the value in the display. For example, to square the value 10, enter 1 0 then Conv 1 .
Conv 🗲	Square Root Function (\sqrt{x}) — Used to find the square root of a non-dimensional or area value (e.g., 1 0 0 \bigcirc \bigcirc \bigcirc 10).
Conv	x10 ^y — Allows entry of an exponent. For example, (a) Conv (b) (1) (4) is 8 times 10 to the 14th power.

Quality Products Online at: www.GlobalTestSupply.com

Conv 🕂	$1/x$ — Finds the reciprocal of a number (e.g., 8 Conv \oplus \oplus 0.125).
Conv 🚍	Change Sign (+/-) — Toggles the sign of the displayed value to positive or negative.
Conv +	<i>Pi (</i> π <i>)</i> — Constant = 3.141593
	<i>Degrees:Minutes:Seconds</i> — Converts between D:M:S and decimal degree formats.
	<i>Total Cost</i> — Calculates total material cost given a unit dimension and an entered Per Unit Cost.
Conv Stor	<i>Access Preference Settings</i> — Used to access various customizable settings, such as dimensional answer formats (see Preference Settings on page 89).

Memory and Storage Functions

Your calculator has two types of Memory:

- 1) basic memory or semi-permanent, cumulative M+;
- 2) non-cumulative Storage Registers (M1-M3).
- Semi-Permanent Memory Adds any displayed number, dimensioned or unitless, to the semi-permanent, cumulative Memory. Values can be subtracted from this Memory using Conv M+ (M-). RCI M+ will display the value in the Memory. RCI RCI will display and clear the value in the Memory. Conv RCI will clear the cumulative Memory without disturbing the existing display.
- Stor 1 3 Storage Registers (M1) through (M3) Stores the displayed value in non-cumulative, permanent Memory (e.g., 1 0 Stor 1). Good for storing a single value, for future reference (RC 1 = 10).

Note: Non-cumulative means it only accepts one value (does not add or subtract) and a second entered value will replace the first. Permanent means the value is stored even after the calculator is shut off. To delete a stored value, enter a new value or perform a Clear All CONV S.

Recall RCI Key

Inch

The **RC** key is used to recall or review stored values (e.g., **RC**) **Pitch** to recall a previously entered pitch value). It is also used in reviewing stored settings, or in Paperless Tape and Memory operation (see below).

RC) 🚍	(<i>Paperless</i>) <i>Tape</i> — Accesses the paperless tape mode (see "Paperless Tape" page 35), which keeps track of your past 20 entries. Useful for checking strings of numbers.
RCI RCI	Clear M+ — Displays and clears M+.
Rci M+	Recall M+ — Displays value stored in M+.
Rc] 1 - 3	<i>Recall (M1) through (M3)</i> — Recalls the value stored in M1, M2, or M3.

Dimensional Measurement Unit Keys

The following keys are used for entering units of measure, with ease and accuracy:

Yards — Enters or converts to yards.

FeetEnters or converts to feet. Also used with the Inch
and ✓ keys for entering feet-inch values (e.g., 6Feet(Inch (1) ✓ (2).

Note: Repeated presses of Feel after Conv toggle between feetinches and decimal feet (e.g., 6 Feel) (nch 1 / 2 Conv Feel 6.791667 feet; press Feel again to return to feet-inch-fractions).

Enters or converts to *inches*. Also used with the key for entering fractional inch values (e.g.,) (nch (1) (2)).

<u>Note</u>: Repeated presses of [net] after Conv toggle between fractional and decimal inches (e.g., [net] 2 Conv [net] 9.5 inch; press [net] again to return to inch-fractions).

Fraction Bar — Used to enter *fractions*. Fractions may be entered as proper (1/2, 1/8, 1/16) or improper (3/2, 9/8). If the denominator (bottom) is not entered, the calculator's fractional resolution setting is automatically used (e.g., entering 1 5 2 = or 1 will display 15/16, based on the default fractional resolution setting of 16ths.

m	<i>Meters</i> — Enters or converts to <i>meters</i> .
Conv 7	<i>Centimeters</i> — Enters or converts to <i>centimeters</i> .
Conv 9	<i>Millimeters</i> — Enters or converts to <i>millimeters</i> .
Conv 2	<i>Acres</i> — Enters or converts (a square value) to <i>acres</i> .
Conv 8	Board Feet — Enters or converts cubic values to <i>board feet</i> . One board foot is equal to 144 cubic inches.

Area and Volume Keys (NOT AVAILABLE ON TRIG MODEL #4080)

Length

Enters a length for calculation of area or volume.

Width

A multi-function key used to enter a width for calcu-

lation of area or volume (if a length and height are also entered). Consecutive presses of this key displays or calculates:

Press Result

- 1 Displays Entered Width
- 2 Area
- 3 Square-up
- 4 Perimeter
- 5 Redisplays Entered Length
- 6 Redisplays Entered Width

Height

A multi-function key used to enter a height for calculation of volume (if a length and width are also entered). Consecutive presses of this key displays or calculates:

Press Result

- 1 Displays Entered Height
- 2 Volume
- 3 Area
- 4 Square-up
- 5 Perimeter
- 6 Wall Area
- 7 Total Room Area
- 8 Redisplays Entered Length
- 9 Redisplays Entered Width

Quality Products Online at: www.GlobalTes1

Weight Keys

- Conv 1 Kilograms (kg) — Enters or converts (a weight or volume value) to kilograms. A dimensioned volume will convert using the stored weight per volume value. Metric Tons (met tons) - Enters or converts (a Conv 3 weight or volume value) to Metric tons. A dimensioned volume will convert using the stored weight per volume value. Conv (4) Pounds (Ibs) - Enters or converts (a weight or volume value) to pounds. A dimensioned volume will convert using the stored weight per volume value. Conv (6) Tons — Enters or converts (a weight or volume value) to tons. A dimensioned volume will convert using the stored weight per volume value. Stor (0) Store Weight per Volume — Stores a new weight per volume value as tons per cubic yard or other format, as listed below: Note: After entering a value and pressing Stor 0, continue pressing the **0** digit key until you've reached the desired weight per volume format. To recall your setting, press Rcl 0. Ton Per CU YD LB Per CU YD LB Per CU FEET
 - MET Ton Per CU M
 - kG Per CU M

This value is permanently stored until you change it or perform a *Clear All* (Conv X).

Construction Project Keys

The following Construction Project Keys help you instantly figure quantities and costs of materials, so you can build like a pro!

Block/Brick Keys (NOT AVAILABLE ON TRIG MODEL #4080)

The *Blocks* function helps you quickly estimate the quantity of blocks or bricks required for building walls, walkways or other areas.

- Conv (engin) Number of Blocks or Bricks Calculates the total number of concrete *blocks* required to fill a given area. Uses a standard block/mortar area of 128 square inches. This key can also be used for calculating the number of "face" or "paver" bricks by storing a brick size (see below).
- Stor 4Store Block or Brick Size (Blk Area) Used to
store a size other than the default block size of 128
square inches (e.g., 1 2 0 fred fred Stor 4
stores a size of 120 square inches). This value is
permanently stored until you change it or perform a
Clear All (Conv X). To recall the stored setting, press
(C) 4.

<u>Note</u>: For Brick Estimates — You may also enter a brick size using Stor (4). For example, when building with standard "face" bricks, enter a brick size of 21 square inches (2) (1) (nch (nch Stor (4)) or store a "paver" brick size of 32 square inches (3) (2) (nch (nch (5tor (4); based on Modular U.S. brick size of 3-5/8 inches x 2-1/4 inches x 7-5/8 inches, including 3/8 inch mortar = 4 inches x 2-5/8 inches x 8 inches).

Circular/Arc Function Keys

The circle key helps you quickly solve circular area, volume or arc problems.

Circ

Circle — Displays and calculates the following values, given an entered circle diameter* or radius:

- diameter
- circle area
- circumference
- *To enter a diameter (e.g., 10 feet), press 1 0 Feet Circ.

Conv Arc

Arc

Run

Rise

Radius — Enters or calculates the *circle radius* (e.g., **5** Feet Conv Arc).

Arc Length or Degree of Arc — A multi-function key that enters or calculates *arc length* or *degree of arc*, and further solves for additional circular/arc values, including arched rake-walls (based on the stored on-center spacing), listed below.

If a circle diameter is entered into the Circ key and arc degree (or arc length) entered into the Arc key, further presses of Arc will display and calculate the following:

Press Result

- 1 Arc Length or Degree of Arc
- 2 Chord Length
- 3 Segment Area
- 4 Pie Slice Area
- 5 Segment Rise
- 6 Stored On-Center Spacing
- 7 Length of Arched Wall 1
- 8 Length of Arched Wall 2
- 9 Length of Arched Wall 3 (if applicable), etc.*

*<u>Note</u>: The calculator will calculate arched rake-wall stud sizes with consecutive presses of the Arc key until it reaches the last stud.

Run (Chord Length) — Enters or calculates the *chord length*. Used in conjunction with an entered segment rise to solve for the radius of a circle or with an entered radius to solve for the segment rise.

Rise (Segment Rise) — Enters or calculates the *segment rise*. Used in conjunction with an entered chord length to solve for the radius of a circle or with an entered radius to solve for the chord length.

Quality Products Online at: www.GlobalTestSupply.com

sales@GlobalTestSupply

Comp

Stor Comp Miter

The Column and Cone functions help you quickly estimate volume and surface area of columns or cones.

Conv Circ Column and Cone — With an entered diameter and rise, the first and second presses of Circ (following Conv) will calculate the total volume and surface area of a *column*; the third and fourth consecutive presses of Circ calculate the total volume and surface area of a *cone*.

Compound Miter/Crown Moulding Keys

The *Construction Master Pro* also calculates compound miter cut angle solutions for cutting and installing crown moulding on a wall. The Compound Miter function can also be used for finding angle cuts for many types of compound miter problems, such as siding, railing and trim.

	Compound Miter — With an entered crown angle and wall corner angle*, consecutive presses of WHR will calculate the following:	
	Press 1 2 3 4 5 6 *Note: W	ResultMiter Gauge (0° reference)Miter Gauge Angle (90° reference)Blade Tilt AngleButt Blade Tilt AngleRedisplays Stored Crown AngleRedisplays Entered Wall AngleVall Angle entries of less than 25 into IMM will be assumed
	late the ι	number of sides; in this case, the calculator will calcu- inknown Wall Angle first, then proceed with the above lculations.
)	<i>the def</i> stores 3	Crown Angle — Stores a value other than fault crown angle of 45° (e.g., 3 8 Stor 1997) 38° crown angle). This value is permanently until you change it or perform a <i>Clear All</i>

(Conv X). To recall the stored setting, press RCI FREP.

Drywall Keys (NOT AVAILABLE ON TRIG MODEL #4080)

Conv Height Drywall Sheets — Calculates the number of 4x8, 4x9, and 4x12 sheets for an entered or calculated area.

Footing Keys (NOT AVAILABLE ON TRIG MODEL #4080)

The Footing keys help you quickly estimate the volume of concrete required for concrete footings.

- **Conv Width Footing** Calculates total quantity of concrete required for *concrete footings* based on an entered wall length and footing size. Size based on the default footing size of 1.8 square feet or 259.2 square inches (industry standard).
- Store Footing Area Used to store a value other than the default footing size of 1.8 square feet (e.g., 1 2 8 (nch (nch Stor 6) stores a footing size of 128 square inches). This value is permanently stored until you change it or perform a Clear All (Conv X). To recall the stored setting, press (CC) 6.

Polygon Key

The Polygon function is handy for calculating multi-sided shapes (such as found in concrete applications).

 Conv Run
 Polygon — With an entered radius and number of sides of a polygon-shaped figure, Conv Run, calculates the following:

Press Result

- 1 Full Angle
- 2 Bi-Sect, or Half Angle
- 3 Side Length
- 4 Perimeter of Polygon
- 5 Area of Polygon
- 6 Redisplays Entered Radius
- 7 Redisplays Entered Number of Sides

Right Triangle:

Using the Pythagorean theorem, the top row of keys on your Construction Master Pro will calculate instant solutions in dimensional format to right triangle problems (particularly, roof framing).

The Construction Master Pro's keys are labeled in easy to remember roofing terms. The right triangle is calculated simply by entering two of four variables: rise, run, diagonal, or pitch.

Pitch

Enters or calculates the pitch (slope) of a roof (or right triangle). Pitch is the amount of "rise" over 12 inches (or 1 meter) of "run." Pitch may be entered as:

- a dimension: (9) Inch Pitch
- an angle or degrees: 3 0 Pitch
- a percentage (percent grade): 7 5 % Pitch
- a pitch ratio: (0) (•) (7) (5) Conv Pitch

Once a pitch in one of the above formats is entered, consecutive presses of Pitch will convert to the remaining pitch formats listed above (e.g., pitch in inches will convert to pitch degrees, percent grade and pitch ratio/slope).

Note: An entered (vs. calculated) pitch is a permanent entry. This means that it will remain stored even after you turn the calculator off. To change the pitch, simply enter a new pitch value.

In contrast, a calculated pitch value is not permanently stored. This means that the calculator will return to the pitch value you last entered when you clear the calculator or press on/c twice.

Juality Products Online at:

<i>Pitch Ratio or Slope</i> — Enters the <i>pitch</i> as a ratio or <i>slope</i> of a roof (or right triangle). For example, 0.58 slope is entered as ● 5 8 Conv Pitch .
Enters or calculates the <i>rise</i> or vertical leg (height) of a right triangle.
Enters or calculates the <i>run</i> or horizontal leg (base) of a right triangle.
Diagonal — Enters or calculates the <i>diagonal</i> leg (hypotenuse) of a right triangle. Typical applications are "squaring up" slabs or finding common rafter lengths. Additional presses of the Dig key will also display plumb and level cut angles in degrees. Note: The Common rafter calculation is the "point-to-point" length

<u>Note</u>: The Common rafter calculation is the "point-to-point" length and does not include the overhang or ridge adjustment.

Hip/Valley and Jack Rafter Keys

The *Construction Master Pro* uses the rise, run, diagonal, pitch and on-center spacing values to calculate *regular* and *irregular* hip/valley and jack rafter lengths (excluding wood thickness, etc.).

Juality Products Online at: www.GIOD

www.GlobalTestSupply.com

sales@GlobalTestSupply

When calculating regular and irregular jack rafter lengths, you will see the letters "JK" (regular pitch side) or "IJ" (irregular pitch side) and the corresponding jack number to the left of your calculator display. This will help you keep track of the descending sizes and which side the corresponding rafter is based on.

SIC	side the corresponding rafter is based on.		
Hip	V	<i>Hip/Valley Rafter</i> — Finds the regular or irregular <i>hip/valley</i> rafter length.	
		• Regular Hip/Valley Length: After right triangle/rafter values are entered or calculated (e.g., pitch, rise, run), pressing Here will calculate the length of the <i>regular</i> hip/valley rafter.	
		 Irregular Hip/Valley Length: If an irregular pitch is entered (see next definition), pressing will calculate the <i>irregular</i> hip/valley rafter length. (An irregular or "non-standard" roof has two different pitches/slopes.) 	
		 Subsequent presses of the Here key will also display plumb, level, and cheek cut angle values in degrees. 	
pitc		<i>Irregular Pitch</i> — Enters the irregular or secondary pitch value used to calculate lengths of the irregular hip/valley and jack rafters.	
		You may enter the irregular pitch as:	
		• a dimension: 9 [nch Conv [Hip/V • an angle: 3 0 Conv [Hip/V] • a percentage: 7 5 % Conv [Hip/V]	
		Note: An entered irregular pitch can be recalled by pressing Rel Conv (Hp/V).	
Jac	ak.	<i>Jack Rafters</i> — Finds the descending <i>Jack</i> rafter sizes for <i>regular</i> pitched roofs, based on the stored on-center spacing and previously entered or calculated right triangle/rafter values (e.g., pitch, rise, run).	
		Repeated presses of the Leck key will display all the rafter sizes (on the regular pitch side) as well as display the plumb, level, and cheek cut angle values. Additional presses will display the rafter sizes on the irregular pitch side (if an irregular pitch was entered; see above), or repeat the previously displayed values.	
		(Cont'd)	

(Cont'd)

Quality Products Online at:

(Cont'd)

<u>Note</u>: You may set your calculator to display the jack rafter lengths in either ascending or descending order (see Preference Settings on **page 89**).

<u>Note</u>: You may program your calculator to "mate up" with the jack rafters, rather than using the entered or default on-center spacing for both sides (see Preference Settings on **page 89**).

Stor 5Store On-Center (o.c.) Spacing — Used to store a
value other than the default of 16 inches on-center
(e.g., 1) 8 Inch Stor 5 stores an 18-inch on-center)
for Jack Rafter calculations. Press Rcl 5 to review
the stored value.

Conv Jack Irregular Side Jacks — Operates same as Jack, but displays the rafter values from the irregular pitched side first.

Rake-Wall Function

Conv Rese **Rake-Wall** — This function finds the stud sizes in a rake-wall based on calculated or entered values for pitch, rise and/or run. Repeated presses of Rese will display the various sizes. The sizes can be displayed in either descending (from longest to shortest) or ascending (from shortest to the longest) order, depending upon your preference setting (see Preference Settings on **page 89**). If a dimensional value is entered before pressing Conv Rese, this value will be taken as the rake-wall base size and automatically added to the various rafter lengths.

Stor 5Store On-Center (o.c.) Spacing — Used to store a
value other than the default of 16 inches on-center
(e.g., 1 8 Inch Stor 5 stores an 18-inch on-center)
for rake-wall stud calculations. Press RC 5 to
review the stored value.

Quality Products Online at: www.GlobalTestSupply.com

Roof Materials/Covering Keys

The *Construction Master Pro's Roof* function provides a quick calculation of roof area, number of squares and bundles, and number of 4x8 sheets required for roof coverage.

Conv Diag	Roof — Given an entered pitch (or rise and run) and plan area (or Length and Width), calculates the following:	
	<u>Press</u>	<u>Result</u>
	1	Roof Area
	2	Number of Roof Squares
	3	Number of Roof Bundles
	4	Roof Bundle Size*
	5	Number of 4x8 Sheets
	6	Stored Pitch
	7	Entered or Calculated Plan Area
	* <u>Note</u> : Ro	oof bundle size is 33.33 square feet.

Stair Key

The *Construction Master Pro* easily calculates stair layout solutions. With entered values for floor-to-floor rise and/or run, it will calculate riser, tread, stringer, and incline angle values simply by pressing the **Stair** key.

Stair

A multi-function key that uses a stored riser height, stored tread width, stored headroom height and floor thickness, and entered rise and run values to calculate and display the following:

Press Result

- 1 Actual Riser Height (R-HT)
- 2 Number of Risers (RSRS)
- 3 Riser Overage/Underage (R+/-)
- 4 Tread Width (T-WD)
- 5 Number of Treads (TRDS)
- 6 Tread Overage/Underage (T+/-)
- 7 Stairwell Opening (OPEN)
- 8 Stringer Length (STRG)
- 9 Incline Angle* (INCL)
- 10 Run of Treads (RUN)
- 11 Floor-to-Floor Rise (RISE)

(Cont'd)

Quality Products Online at:

www.GlobalTestSupply.com

sales@GlobalTestSupply

Press Result

- 12 Stored (Desired) Riser Height (R-HT STORED)
- 13 Stored (Desired) Tread Width (T-WD STORED)
- 14 Stored Headroom (HDRM STORED)
- 15 Stored Floor Thickness (FLOR STORED)

<u>Note</u>: Default values are 7-1/2 inches for Desired Riser Height and 10 inches for Desired Tread Width, 10 inches for Floor Thickness, and 6 feet 8 inches for Headroom Height.

<u>Note</u>: It is not possible for the calculator to include the nose/overhang measurement. Thus, you need to adjust for this measurement per local codes.

*<u>Note</u>: If the inclination angle exceeds the stored riser height and tread width ratio by 10%, the yield symbol will appear, indicating a steep incline.

Stor 7 Store Desired Riser Height — Stores a value other than the default desired stair riser height of 7-1/2 inches (e.g., 8 Inch Stor 7 stores an 8-inch desired stair riser height). To recall the stored setting, press RCI 7.

- Stor (3)Store Floor Thickness/Height Stores a value
other than the default desired floor thickness of 10
inches (e.g., (3) Inch (Stor (3) stores an 8-inch desired
floor thickness). To recall the stored setting, press(C) (3). This is used, along with stored headroom
height, for calculating the length of the stairwell
opening.
- Store Desired Tread Width Stores a value other
than the default desired stair tread width of 10 inches
(e.g., 1 2 Inch Stor 9 stores a 12-inch desired
stair tread width). To recall the stored setting, press
RCI 9.
- Conv Stor Stor Stor Headroom Height Stores the desired Stor Stor Stor headroom height for calculation of the stairwell opening. Default is 6 feet 8 inches. Use the ♣ key to increase and the ➡ key to decrease the stored headroom height. See Preference Settings instructions on page 89.

Riser Limited — Used for situations when the riser height is limited by local code. When you press **Conv Store**, the calculator will recalculate stair values so that the actual riser height will not exceed your *stored* desired riser height (e.g., it will never exceed the stored desired riser height of 7-1/2 inches, if 7-1/2 inches is the value stored using **Stor** (7). To compensate for this limitation, the calculator will add one to the number of risers.

Studs

The *Construction Master Pro* also calculates the number of studs required for a wall using an entered length and stored on-center spacing value.

Studs — Calculates the number of *studs* for an entered or displayed linear value. Based on the stored on-center spacing (16 inches is the default).

Trigonometric Keys (TRIG #4080 AND DESKTOP #44080 MODELS ONLY)

Quality Products Online at:

www.GlobalTestSupply.com

sales@GlobalTestSuppl

The *Trig* model (#4080) and *Desktop* (#44080) calculators have standard trigonometric keys, in addition to right triangle/rafter keys (e.g., rise, run, diagonal), for advanced right triangle mathematics.

The sine, cosine and tangent of an angle are defined in relation to the sides of a right triangle.

Using the **Conv** key with the trigonometric function displays the inverse (arcsine, arccosine, and arctangent). These are used to find the angle for the sine, cosine, or tangent value entered.

Sine	Sine Function — Calculates the <i>sine</i> of an entered degree or non-dimensioned* value.
Conv Sine	Arcsine (sin ⁻¹) — Calculates the angle for the entered or calculated sine value.
Cos	<i>Cosine Function</i> — Calculates the <i>cosine</i> of a degree or non-dimensioned* value.
Conv Cos	Arccosine (cos ⁻¹) — Calculates the angle for the entered or calculated cosine value.
Tan	<i>Tangent Function</i> — Calculates the <i>tangent</i> of a degree or non-dimensioned* value.
Conv Tan	Arctangent (tan ⁻¹) — Calculates the angle for the entered or calculated tangent value.
	*Note: Cannot use on dimensioned values.

ENTERING DIMENSIONS

Entering Linear Dimensions

When entering feet-inch-fraction values, enter dimensions from largest to smallest - e.g., feet before inches, and inches before fractions. Enter fractions by entering the numerator (top), pressing (fraction bar key), and then the denominator (bottom).

Note: If a denominator is not entered, the fractional setting value is used.

Examples of Entering Linear Dimensions:

DIMENSION	KEYSTROKES
Clear calculator	On/C
5 Feet 1-1/2 Inch	5 Feet 1 Inch 1 / 2
Clear calculator	On/C
5 Yards	5 Yas
<i>Clear calculator</i>	on/c
17.5 Meters	17•5m

Entering Square/Cubic Dimensions

The Construction Master Pro lets you easily enter square and cubic values. Simply press a dimensional unit key two times to label a number as a square value, or three times to label a cubic value.

Note: If you pass the desired dimensional format, keep on pressing the dimensional unit key until the desired result is displayed again.

Enter square and cubic dimensions in the following order:

- (1) Enter numerical value (e.g., 1 0 0).
- (2) Press desired unit key (e.g., Feet) to label value as "linear." **KEYSTROKE** DISPLAY

	On/C On/C	0.
	100 Feet	100 FEET
(3)	Second press of unit key (e.g., Feet Feet)	labels value as "square."
	KEYSTROKE	DISPLAY
	On/C On/C	0.
	1 0 Feet Feet	100 SQ FEET
(4)	Third press of unit key (e.g., Feet Feet Feet) labels value as "cubic."
	KEYSTROKE	DISPLAY
	On/C On/C	0.
	1 0 0 Feet Feet Feet	100 CU FEET

100 CU FEET

Note: Feet-Inches format cannot be used to enter square or cubic values.

Examples of Entering Square and Cubic Dimensions:

YARDS
Yas Yas — Square Yards
(e.g., 5) Yas Wall display 5. SQ YD).
Yas Yas — Cubic Yards
(e.g., 5) Yas Yas will display 5. CUYD).
FEET
Feet Feet — Square Feet
(e.g., 5) Feet Feet will display 5. SQ FEET).
Feet Feet — Cubic Feet
(e.g., 5 Feet Feet will display 5. CU FEET).
INCHES
Inch Inch — Square Inches
(e.g., 5 Inch Inch will display 5. SQ INCH).
Inch Inch — Cubic Inches
(e.g., 5) Inch Inch Inch will display 5. CU INCH).
METERS
📾 📾 — Square Meters
(e.g., 5 🝘 🝘 will display 5. SQ M).
m m — Cubic Meters
(e.g., 5 m m will display 5. CU M).
CENTIMETERS
Conv 7 7 – Square Centimeters
(e.g., 5 Con 7 7 will display 5. SQ CM).
Conv 7 7 7 – Cubic Centimeters
(e.g., 5 Conv 7 7 7 will display 5. CU CM).
MILLIMETERS
MILLIMETERS CONV 9 9 — Square Millimeters (e.g., 5 CONV 9 9 will display 5. SQ MM).
MILLIMETERS

Quality Products Online at:

SETTING FRACTIONAL RESOLUTION

The *Construction Master Pro* is set to display fractional answers in 16ths of an inch. All examples in this User's Guide are based on 1/16". However, you may select the fractional resolution to be displayed in other formats (e.g., 1/64", 1/32", etc.). The two methods of changing fractional resolution are shown below.

Setting Fractional Resolution — Using the Preference Setting Mode

KEYSTROKE	DISPLAY
1. Access Preference Settings: Conv Stor	FRAC 0-1/16 INCH*
 2. Access Next Fraction Subsetting: 3 4 4 5 6 6 6 6 7 7 7 8 9 9 9 9 10 10<!--</td--><td>FRAC 0-1/32 INCH FRAC 0-1/64 INCH FRAC 0-1/2 INCH FRAC 0-1/4 INCH FRAC 0-1/8 INCH FRAC 0-1/16 INCH</td>	FRAC 0-1/32 INCH FRAC 0-1/64 INCH FRAC 0-1/2 INCH FRAC 0-1/4 INCH FRAC 0-1/8 INCH FRAC 0-1/16 INCH

3. To Permanently Set the Fractional Resolution You Have Selected Above, press (or any key) to set the displayed Fractional Resolution and Exit Preference Settings.

	On/C		0.
4.	To Recall Your Selected Fractional Resolution:		
	RcI 🖊	STD	0-1/16 імсн

* 1/16" is the default setting. The display may differ from the example depending on what the resolution is currently set to.

Setting Fractional Resolution — Using Conv

KEYSTROKE	DISPLAY
1. Clear calculator: On/C On/C	0.00
2. Set calculator to 1/2: Conv 2	FRAC 0-1/2 INCH
3. Set calculator to 1/32: Conv 3	FRAC 0-1/32 INCH
4. Set calculator to 1/4: Conv (4)	FRAC 0-1/4 INCH
5. Set calculator to 1/64: Conv 6	FRAC 0-1/64 INCH
6. Set calculator to 1/8: Conv 8	FRAC 0-1/8 INCH
7. Return calculator to 1/16: Conv 1	FRAC 0-1/16 INCH

Note: Display will flash the new fractional setting for one second.

Converting a Fractional Value to a Different Resolution

Add 44/64th to 1/64th of an inch and then convert the answer to other fractional resolutions:

KEYSTROKE	DISPLAY
On/C On/C	0.
44764	0-44/64 INCH
+ 1 ⁄ 6 4 =	0-45/64
Conv 1 (1/16)	0-11/16
Conv 2 (1/2)	0-1/2
Conv 3 (1/32)	0-23/32
Conv (1/4)	0-3/4
Conv 6 (1/64)	0-45/64
Conv 8 (1/8)	0-3/4
On/C On/C*	0.

*Changing the Fractional Resolution on a displayed value does not alter your Fractional Resolution Setting.

Setting Fixed/Constant Fractional Resolution

You can also program your calculator so that the displayed fraction will *always* show in the fractional resolution you have set (following the above instructions). That is, instead of solving for the closest fraction, it will always display the chosen fractional resolution. For example, if you have chosen 1/64ths via Conv 6, 1/2 will be displayed as 32/64.

If you do not use this feature, Standard Fractional Resolution will be displayed. In other words, in the above example, 1/2 will be displayed as 1/2.

To change your calculator to Fixed (or Constant) Fractional Resolution: 1) Turn off your calculator; 2) hold down the fraction bar **⊘**, then; 3) Turn your calculator back on.

To display your setting, press C and it will read "CNST" and whatever fractional resolution you've selected (e.g., **CNST 0-1/64** INCH).

To return your calculator to the default 1/16" Standard Fractional Resolution, repeat the above steps, then press CONV 1. Press RCI to display your setting. In this case, it will read "STD 0 1/16 INCH."

CONVERSIONS (LINEAR, AREA, VOLUME)

Linear Conversions

Convert 14 feet to other dimensions:

KEYSTROKE	DISPLAY
On/C On/C	0.
1 4 Feet	14 FEET
Conv Yds	4.666667 YD
Feet	14 FEET 0 INCH
Inch	168 INCH
m	4.267 м
Conv 7 (<i>cm</i>)	426.720 см
Conv 🧿 (mm)	4267.200 мм

<u>Note</u>: When performing multiple conversions, you only have to press the **Conv** key once except when accessing secondary functions, such as **Conv** 7 for centimeters.

Converting Feet-Inch-Fractions to Decimal Feet

Convert 15 feet 9-1/2 inches to decimal feet. Then convert back to feet-inch-fractions.

KEYSTROKE	DISPLAY
On/C On/C	0.
1 5 Feet 9 Inch 1 / 2	15 FEET 9-1/2 INCH
Conv Feet	15.79167 FEET
Feet *	15 FEET 9-1/2 INCH

Converting Decimal Feet to Feet-Inch-Fractions

Convert 17.32 feet to feet-inch-fractions.

KEYSTROKE	DISPLAY
On/C On/C	0.
1 7 • 3 2 Feet	17.32 FEET
Conv Feet	17 FEET 3-13/16 INCH
Feet *	17.32 FEET

*Repeated presses of Geel or Inch will toggle between Feet-Inch-Fractions and Decimal Feet or Inches.

Quality Products Online at: www.GlobalTestSupply.com

Converting Fractional Inches to Decimal Inches

Convert 8-1/8 inches to decimal inches. Then convert to decimal feet.

KEYSTROKE	DISPLAY
On/C On/C	0.
8 Inch 1 / 8	8-1/8 INCH
Conv Inch	8.125 INCH
Feet	0.677083 FEET
Inch *	8.125 INCH

Converting Decimal Inches to Fractional Inches

Convert 9.0625 inches to fractional inches. Then convert to decimal feet.

KEYSTROKE	DISPLAY
On/C On/C	0.
9 • 0 6 2 5 Inch	9.0625 INCH
Conv Inch	9-1/16 імсн
Feet Feet *	0.755208 FEET

*Repeated presses of Geet or Inch will toggle between Feet-Inch-Fractions and Decimal Feet or Inches.

Square Conversions

Convert 14 square feet to other square dimensions:

KEYSTROKE	DISPLAY
On/C On/C	0.
1 4 Feet Feet	14. SQ FEET
Conv Inch	2016. SQ INCH
Yds	1.555556 sq yd
m	1.300643 ѕо м
Conv 7 (<i>cm</i>)	13006.43 sq см

Cubic Conversions

Convert 14 cubic feet to other cubic dimensions:

KEYSTROKE	DISPLAY
On/C On/C	0.
1 4 Feet Feet Feet	14. CU FEET
Conv Inch	24192. CU INCH
Yds	0.518519 CU YD
m	0.396436 си м

Quality Products Online at:

www.GlobalTestSupply.com

sales@GlobalTestSupply

PERFORMING BASIC MATH WITH DIMENSIONS

Adding Dimensions	
KEYSTROKE	DISPLAY
Add 11 inches to 2 feet 1 inch: 1 1 (nch) + 2 Feet 1 (nch) =	3 FEET 0 INCH
Add 5 feet 7-1/2 inches to 18 feet 8 inches: 5 Feet 7 (nch 1 / 2 + 1 8 Feet 8 (nch)	3 24 FEET 3-1/2 INCH
Subtracting Dimensions	
KEYSTROKE	DISPLAY
Subtract 3 feet from 11 feet 7-1/2 inches: 1 1 Feet 7 Inch 1 7 2 - 3 Feet -	8 FEET 7-1/2 INCH
Subtract 32 inches from 81 inches: 8 1 Inch = 3 2 Inch =	49 INCH
Multiplying Dimensions	
KEYSTROKE	DISPLAY
Multiply 5 feet 3 inches by 11 feet 6-1/2 inches: (5) Feet (3) (Inch (X) (1) (1) Feet (6) (Inch (1) (7) (2)	8
	60.59375 SQ FEET
Multiply 2 feet 7 inches by 10: 2 Feet 7 Inch 🗙 1 0 🖨	25 FEET 10 INCH
Dividing Dimensions	
KEYSTROKE	DISPLAY
Divide 30 feet 4 inches by 7 inches: ③ ① Feet ④ (Inch 🖶 ⑦ (Inch) 🖨	52.
Divide 20 feet 3 inches by 9: ② ① Feet ③ Inch 🕂 ⑨ ⊟	2 FEET 3 INCH

Quality Products Online at: www.GlobalTestSupply.com

Percentage Calculations

The percent 🔀 key is used to find a given percent of a number or to perform add-on, discount or division percentage calculations. You may also perform percentage calculations with dimensional units (feet, inch, etc.), in any format (linear, square or cubic).

Examples:

KEYSTROKE	DISPLAY
Find 18% of 500 feet: 5 0 0 Feet 🗙 1 8 %	90 FEET 0 INCH
Add 10% to 137 square feet: 1 3 7 Feet Feet + 1 0 %	150.7 SQ FEET
Subtract 20% from 552 feet 6 inches: 5 5 2 Feet 6 Inch = 2 0 %	442 FEET 0 INCH
Divide 350 cubic yards by 80%: 3 5 0 Yds Yds 🗧 8 0 %	437.5 CU YD

MEMORY OPERATION

Your calculator has two types of Memory operations:

- 1) a standard, cumulative, semi-permanent memory M+; and
- 2) three storage registers [M1], [M2], and [M3], used to permanently store single, non-cumulative values.

Memory commands are listed below.

FUNCTION	KEYSTROKES
M+ :	
Add value to M+	M+
Subtract value from M+	Conv M+
Clear M+	Conv Rcl
Display and Clear M+	Rci Rci
Recall stored value	Rci M+
M1/M2/M3:	
Store single value in M1	Stor 1
Store single value in M2	Stor 2
Store single value in M3	Stor 3
Clear register M1	0 Stor 1
	(Cont'd)

Quality Products Online at:

(Cont'd)

FUNCTION

Clear register M2	0 Stor 2
Clear register M3	0 Stor 3
Recall stored value in M1	RCI (1)
Recall stored value in M2	RCI (2)
Recall stored value in M3	RCI (3)

Basic Cumulative Memory (M+)

Example:

Store 100 into M+, add 200, and then subtract 50. Clear the Memory:

KEYSTROKE	DISPLAY
100M+	M+ 100.
200M+	M+ 200.
5 0 Conv M+	M- 50.
Rci Rci	M+ 250.
Nata Ta Class Massau (M.)	

<u>Note</u>: To Clear Memory (M+):

- press Rci Rci;
- Conv Rcl; or

- turn off the calculator.

Permanent Storage Registers (M1 and M2)

Examples:

Store a rate of \$175 into M1 and recall the value:

KEYSTROKE	DISPLAY
1 7 5 Stor 1	M-1 175.
Off On/C	0.
Rci 1	M-1 STORED 175.

Store 1,575 square yards into M2 and recall the value:

KEYSTROKE	DISPLAY
1 5 7 5 Yds Yds Stor 2	M-2 1575. sq yd
Off On/C	0.
RcI (2)	M-2 STORED 1575. SQ YD

<u>Note</u>: To Clear M1-M3: Values stored in M1-M3 will remain permanently stored, even after you turn the calculator off. You will never need to clear the storage registers; simply enter a new value. However, if you wish to clear M1-M3 to "zero": - Enter ① Stor 1, ① Stor 2, or ① Stor 3 OR Conv X to clear all registers

)uality Products Online at: www.

www.GlobalTestSupply.com

KEYSTROKES

PAPERLESS TAPE OPERATION

Note: Not available on DT (Desktop) Printer — Model #44065.

The Paperless Tape allows you to display and review the last twenty entries of a regular math or basic dimensional math string calculation.

To access this mode after entering values, press **R ⊡ ⊡**. Then, press **⊕** or **□** to scroll forward or backward through the entries.

While in the Paperless Tape mode, the display will show the previously entered or calculated value, along with the sequential number of entry (e.g., 01, 02, 03, etc.) and the math operator (+, -, x, \div , %) in the upper left corner of the display.

Note: If label{eq: If label{eq: Note: If label} has been used in the middle of a string, SUB (for Subtotal) will display in the upper left. If label{eq: Note: Not

To **exit** this mode, press \square to exit and maintain the last entry on the display. When exiting, the last entry (or TTL) will be displayed, allowing you to continue using the last tape value for another operation, if desired.

Note: The Paperless Tape is cleared when:

- On/C is pressed twice;
- upon a new calculation (new equation string is started); or
- when the calculator is shut off.

Example:

KEYSTROKE	DISPLAY
1. Enter a string of numbers:	
4 Feet +	4 FEET 0 INCH
5 Feet +	9 FEET 0 INCH
6 Feet +	15 FEET 0 INCH
7 Feet =	22 FEET 0 INCH
2. Access the tape function:	
Rc] 🖨	TTL= 22 FEET 0 INCH
3. Scroll from first value to total:	
0	01 4 FEET 0 INCH
0	02+ 5 FEET 0 INCH
0	03+ 6 FEET 0 INCH
0	04+ 7 FEET 0 INCH
0	TTL = 22 FEET 0 INCH
	(Cont'd)

)uality Products Online at:

(Cont'd)

4. Scroll last two values:	04+ 7 FEET 0 INCH 03+ 6 FEET 0 INCH
 5. Exit tape function and continue: Continue: <	TTL= 22 FEET 0 INCH 22 FEET 0 INCH 24 FEET 0 INCH

Juality Products Online at:

www.GlobalTestSupply.com

sales@GlobalTestSuppl

EXAMPLES — USING THE CONSTRUCTION MASTER PRO

The Construction Master Pro calculators have keys and functions labeled in common building terms. Just follow the examples and adapt the keystrokes to your specific application.

Please note that some of the following examples will not apply to your specific calculator model. For example, the Trig Model (#4080) has trigonometry functions, but does not have Length, Width or Height keys, or Block, Footing or Drywall functions.

It is good practice to clear your calculator (press **Onc** twice) before beginning each problem. And remember to use the Backspace key to correct entries one entry at a time.

LINEAR MEASUREMENT EXAMPLES

Adding Linear Measurements

Find the total length of the following measurements: 5 feet 4-1/2 inches, 8 inches and 3.5 yards.

KEYSTROKE	DISPLAY
1. Add the measurements:	
On/C On/C	0.
5 Feet 4 Inch 1 / 2 +	5 FEET 4-1/2 INCH
8 Inch +	6 FEET 0-1/2 INCH
3 • 5 Yds	3.5 YD
2. Find the total:	
8	16 FEET 6-1/2 INCH
Cutting Boards	

How many 2 foot 2 inch pieces can be cut from one 10-foot board?

KEYSTROKE	DISPLAY
Divide board length by smaller cuts:	
On/C On/C	0.
1 0 Feet	10 FEET
🕂 2 Feet 2 Inch =	4.615385
	(4 whole pieces)

Window Measurement

What is the total width of three window openings, if each measures 2 feet 5 inches in width?

KEYSTROKE	DISPLAY
1. Enter window width:	
On/C On/C	0.
2 Feet 5 Inch	2 FEET 5 INCH
2. Find total width:	
★ 3 =	7 FEET 3 INCH
3. Convert to decimal feet:	
Feet	7.25 FEET

Calculating the Center Point

You have a room that measures 13 feet 8 inches by 14 feet 10 inches. Find the center point to install a ceiling fan.

DISPLAY
0.
13 FEET 8 INCH
6 FEET 10 INCH
14 FEET 10 INCH
7 FEET 5 INCH

Therefore, you should install the fan at the intersection of 6 feet 10 inches length and 7 feet 5 inches width.

AREA CALCULATIONS

Square Area (x²)

What is the area of a square room with sides measuring 7 feet 4 inches?

KEYSTROKE

DISPLAY

0.

On/C On/C

7 Feet 4 Inch Conv % (X^2)

53.77778 SQ FEET

Area of a Rectangular Room (LxW)

What is the area of a room measuring 12 feet 6 inches by 15 feet 8 inches?

KEYSTROKE

DISPLAY

0.

On/C On/C 1 2 Feet 6 Inch X 1 5 Feet 8 Inch =

0. 12 FEET 6 INCH 195.8333 SQ FEET

*<u>Note</u>: You can also find area using the term and with keys as seen in the next problem. However, these keys are not available on the Trig Model (#4080).

Using Multi-Function Web Key to Find Area, Square-up and Perimeter (NOT AVAILABLE ON TRIG MODEL #4080)

Find the area, square-up and perimeter of a space measuring 20 feet 6 inches by 25 feet 6 inches:

KEYSTROKEDISPLAYOn/COn/C0.20Feet 6Inch (ength)25Feet 6Inch (width)WidthWDTH 25FEET 6WidthAREA 522.75sq FEETWidthSQUP 32FEET 8-5/8WidthPER 92FEET 0

Quality Products Online at:

Rectangular Containers (LxWxH)

What is the volume of a rectangular container that measures 3 feet by 1 foot 9-5/8 inches by 2 feet 4 inches?

KEYSTROKE

- 1. Find volume in cubic feet:
 - On/C On/C 3 Feet X 1 Feet 9 Inch 5 / 8 X 2 Feet 4 Inch =

0. 3 feet 1 feet 9-5/8 inch 12.61458 cu feet*

2. Convert to cubic yards:

Conv Yds

0.467207 CU YD

DISPLAY

*<u>Note</u>: If the "Volume Display Format" Preference Setting is set to cubic yards or cubic meters, your result will display accordingly. (See Preference Settings on **page 89**.)

Using the Multi-Function (Height) Key to Find Volume, Area, Squareup, Perimeter, Wall Area and Room Area (NOT AVAILABLE ON TRIG MODEL #4080)

Find the volume, area, square-up, perimeter, wall area and total surface/room area* if you have a length of 15 feet, width of 20 feet and height of 12 feet.

*Room Area includes 4 walls plus ceiling area.

KEYSTROKE	DISPLAY
On/C On/C	0.
1 5 Feet Length	LNTH 15 FEET 0 INCH
2 0 Feet Width	WDTH 20 FEET 0 INCH
1 2 Feet Height	HGHT 12 FEET 0 INCH
Height	VOL 3600. CU FEET
Height	AREA 300. SQ FEET
Height	SQUP 25 FEET 0 INCH
Height	PER 70 FEET 0 INCH
Height	WALL 840. SQ FEET
Height	ROOM 1140. SQ FEET

Volume of a Cylinder

Calculate the volume of a cylinder with a diameter of 2 feet 4 inches and a height of 4 feet 6 inches:

*Note: For a cylinder, use the Column function.

KEYSTROKE	DISPLAY
1. Find circle area:	
On/C On/C	0.
2 Feet 4 Inch	2 FEET 4 INCH
Circ Circ	AREA 4.276057 SQ FEET
2. Enter height (as rise) and find volume:	
(4) Feet (6) Inch Rise	RISE 4 FEET 6 INCH
Conv Circ	COL 19.24226 CU FEET
Volume of a Cone	
Calculate the volume of a cone with a dian and a height of 5 feet:	neter of 3 feet 6 inches
KEYSTROKE	DISPLAY
1. Find circle area:	
On/C On/C	0.
3 Feet 6 Inch Circ	DIA 3 FEET 6 INCH
Circ	AREA 9.621128 SQ FEET
2. Enter height (as rise) and find volume:*	
(5) Feet Rise	RISE 5 FEET 0 INCH
Conv Circ Circ Circ *	CONE 16.03521 CU FEET
*Note: To access Cone volume, you must press the	Circ key three times after Conv.

WEIGHT/VOLUME CONVERSIONS

Weight Conversions

Convert 2,500 pounds to kilograms, tons and metric tons:

KEYSTROKE	DISPLAY
1. Enter pounds:	
On/C On/C	0.
2 5 0 0 Conv 4 (lbs)	2500 LB
2. Convert to kilograms, tons and metric tons:	
Conv (1) (kg)	1133.981 kG
Conv 6 (tons)	1.25 Ton
Conv 3 (met tons)	1.133981 MET Ton
Weight per Volume/Volume Conversions	

Convert 5 cubic yards of concrete to pounds, tons and kilograms, if concrete weighs 1.5 tons per cubic yard.

KEYSTROKE	DISPLAY
 Store weight per volume: On/C On/C Stor 0* (wt/vol) 	0. 1.5 Ton Per CU YD
 2. Enter concrete volume: 5 Yds Yds Yds 	5. cu yd
 3. Convert to pounds, tons and kilograms: Conv (4) (lbs) Conv (6) (tons) Conv (1) (kg) 	15000. LB 7.5 Ton 6803.886 kG
the set of	- '

*If calculator does not display Tons per Cubic Yard, keep pressing the ① key until the desired format is displayed (e.g., Ton Per CU YD, LB Per CU YD, LB Per CU FEET, MET Ton Per CU M, or kG Per CU M).

BLOCKS/BRICKS (NOT AVAILABLE ON TRIG MODEL #4080)

Number of Blocks, Based on Calculated Area

You are building an "L" shaped retaining wall out of standard 8-inch x 16-inch size blocks (*Note: this is the default block size of 128 sq. inches*). One side of the retaining wall is 22 feet long, and the other side is 15 feet 8 inches long. The wall is to be 4 feet high. How many blocks are required to build this wall? Add a 5% waste allowance.

KEYSTROKE	DISPLAY
 Find total wall length: On/C On/C Rc) Conv (4)* (2) Feet (1) (5) Feet (8) (Inch) (=) (Length) 	0. BAR STORED 128. SQ INCH 37 FEET 8 INCH 37 FEET 8 INCH
2. Enter wall height as width and find (4) Feet Width Width	wall area: 4 FEET 0 INCH 150.6667 SQ FEET
 3. Find the number of blocks and add Conv (engin) ⊕ 5 % 	5% waste allowance: BLKS 169.5 177.975 (178 Blocks)
*If RCI Conv Length (Blocks) does not re enter the following:	sult in 128 square inches, then
1 2 8 Inch Inch Stor 4 -OR-	BAR STORED 128. SQ INCH

Find the number of blocks required for an square feet. Add a 3% waste allowance.	area measuring 300
KEYSTROKE	DISPLAY
On/C On/C	0.
3 0 0 Feet Feet Conv Length	BLKS 337.5
+ 3 %	347.625
	(348 Blocks)

Quality Products Online at: www.GlobalTestSupply.com

(8) Inch 🗙 (1) (6) Inch 😑

Number of Blocks. Based on Entered Area

Stor (4)

128. SQ INCH

B--AR STORED 128. SQ INCH

Number of Blocks, Based on Calculated Perimeter

Calculate the wall's perimeter if the length is 30 feet and width 45 feet. Then, find the number of blocks required. Add a 3% waste allowance.

|--|

KEYSTROKE

1. Find wall area: -

On/C On/C	0.
3 0 Feet Length	LNTH 30 FEET 0 INCH
(4) (5) Feet Width	WDTH 45 FEET 0 INCH
2. Find the perimeter:	
Width Width Width	PER 150 FEET 0 INCH
3. Find the number of blocks for the displa	yed perimeter, and add
3% waste allowance:	
Conv Length	BLKS 112.50
+ 3 %	115.875

Number of Blocks, Based on Length

Calculate the number of blocks required for a length of 20 feet.

1	Enter length	then convert t	to number o	of blocks
	Enter length			<i>n bioons.</i>

On/C On/C	
2 0 Feet Conv Length	

2. Display the stored on-center*: Length

*The calculator will calculate the number of blocks based on the entered length and stored on-center.

0.

DISPLAY

BLK STORED 16 INCH

DISPLAY

(116 Blocks)

0. **BLKS 15.**

Number of "Face" Bricks

How many "face" bricks (21 square inch size) will you need to purchase to fill a 40 foot by 8 foot wall, if you include a 3% waste allowance? Use the Block function for calculating bricks.

KEYSTROKE	DISPLAY	
 Enter and store brick size into Bloc On/C On/C (1) Inch Inch Stor (4) 	k Area storage key: 0. BAR STORED 21. sq INCH	
 2. Find area of wall: (4) (0) (Feet) (Length) (8) (Feet) (Width) (Width) 	LNTH 40 FEET 0 INCH AREA 320. SQ FEET	
Conv Length Conv Length Conv Conv Conv Conv Conv Conv Conv Conv		
4. Reset Block Area to default value: 1 2 8 (net) (net) (Stor 4)	BAR STORED 128. SQ INCH	
Number of "Paver" Bricks		
How many "paver" bricks (32 square inch size) will you need to fill a 5-foot by 15-foot walkway?		
KEYSTROKE	DISPLAY	
1. Enter brick size into Block Area sto	rage key: 0.	
3 2 Inch Inch Stor 4	BAR STORED 32. SQ INCH	
 2. Find area of walkway: 5 Feet Length 1 5 Feet Width Width 	LNTH 5 FEET 0 INCH AREA 75. SQ FEET	
3. Find the number of bricks: Conv Length	BLKS 337.5 (338 Bricks)	
4. Reset Block Area to default value: 1 2 8 (neh (neh Stor 4)	BAR STORED 128. SQ INCH	

BOARD FEET — LUMBER ESTIMATION

The Construction Master Pro easily calculates board feet for lumber estimation problems. Simply enter the board's cubic dimensions and press Conv (8) to convert to board feet. Use Conv (0) (Cost) to figure total lumber cost.

Note: Unit cost is entered in the standard per thousand board foot measure (Mbm) format.

Total Board Feet — With Dollar Cost

Find the total board feet for the following board sizes:

If the boards cost \$250 per Mbm., what is the total cost?

KEYSTROKE

1. Enter board sizes, convert to board feet and store in memory:

On/C On/C $(2) \times (4) \times (1)(4)$ Conv (8) M+

- (2) X (1) (0) X (1) (6) Conv (8) M+ 2 X 1 2 X 1 8 Conv 8 M+
- 2. Recall total board feet and calculate total cost:

RCI RCI	BDFT 72.
X 2 5 0 Conv 0 (Cost)	\$18.00

Number of Board Feet Based on Entered Volume

Find the number of board feet required for a volume of 150 cubic feet.

KEYSTROKE	DISPLAY
Enter cubic feet and conver	rt to board feet:
On/C On/C	0.
1 5 0 Feet Feet Feet	150. CU FEET
Conv 8	BDFT 1800.

www.GlobalTestSupply.com Juality Products Online at:

 $2 \times 4 \times 14$ $2 \times 10 \times 16$ 2 x 12 x 18

0.

DISPLAY

BDFT 9.333333 M

BDFT 26.66667 M

BDFT 36. M

CIRCLE AND ARC CALCULATIONS

Circumference and Area of a Circle

Find the area and circumference of a circle with a diameter of 11 inches:

KEYSTROKE	DISPLAY
On/C On/C	0.
1 1 Inch Circ	DIA 11 INCH
Circ	AREA 95.03318 SQ INCH
Circ	CIRC 34-9/16 INCH

Arc Length — Degree and Diameter Known

Find the arc length of an 85° portion of a circle with a 5-foot diameter:

KEYSTROKE	DISPLAY
On/C On/C	0.
5 Feet Circ	DIA 5 FEET 0 INCH
8 5 Arc	ARC 85.00°
Arc	ARC 3 FEET 8-1/2 INCH

Arc Length — Degree and Radius Known

Find the arc length of a circle with a 24-inch radius and 77° of arc:

KEYSTROKE	DISPLAY
On/C On/C	0.
2 4 Inch Conv Arc	RAD 24 INCH
(7) (7) (Arc)	ARC 77.00°
Arc	ARC 32-1/4 INCH

Quality Products Online at:

Arc Calculations — Arc Length and Diameter Known

Find the arc degree, chord length, segment rise, segment and pie slice area, and segment rise, given a 5-foot diameter and an arc length of 3 feet 3 inches:

KEYSTROKE

DISPLAY

(Note: enter diameter into the Circ key):	Enter circle diameter	1.
0.	On/C On/C	
DIA 5 FEET 0 INCH	5 Feet Circ	
ARC 3 FEET 3 INCH	Enter arc length: 3 Feet 3 Inch Arc	2.
ARC 74.48°	Find degree of arc:	3.
CORD 3 FEET 0-5/16 INCH	Find chord length:	4.
SEG 1.051381 SQ FEET	Find segment area:	5.
PIE 4.0625 SQ FEET	Find pie slice area:	6.
RISE 0 FEET 6-1/8 INCH	Find segment rise:	7.

Quality Products Online at:

You're building a circular or arched rake wall. Given a chord length of 15 feet and a rise of 5 feet, find all arc values and lengths of the arched walls. The on-center spacing is 16 inches.

15'
KEYSTROKE DISPLAY
1. Enter chord length and segment rise:
On/C 0. 1 5 Feet Run RUN 15 FEET 0 INCH 5 Feet Rise RISE 5 FEET 0 INCH
2. Calculate radius: Conv Arc RAD 8 FEET 1-1/2 INCH
3. Find arc angle: Arc ARC 134.76°
4. Find arc length: АС 19 гест 1-5/16 імсн
5. Display entered chord length: Arc CORD 15 FEET 0 INCH
6. Find segment area: SEG 54.19722 SQ FEET
7. Find pie slice area: PIE 77.63472 SQ FEET
8. Display entered segment rise: AC RISE 5 FEET 0 INCH
9. Display stored on-center spacing for the wall: Агс ОС 16 INCH* (Cont'd)

Quality Products Online at:

(Cont'd)

KEYSTROKE

10. Find arched wall stud lengths:

Arc	AW1 4 FEET 10-11/16 INCH
Arc	AW2 4 FEET 6-5/8 INCH
Arc	AW3 3 FEET 11-3/8 INCH
Arc	AW4 3 FEET 0-1/16 INCH
Arc	AW5 1 FEET 6-1/4 INCH

<u>Note</u>: Successive presses of Arc will toggle to the beginning.

Arched Windows

Find the radius of an arched window with a chord length of 2 feet 7 inches and a rise of 10-1/2 inches. Then, find the arc angle, arc length and segment area of the window.

2' 7" Run

KEYSTROKE	DISPLAY
1. Enter chord length:	
On/C On/C	0.
2 Feet 7 Inch Run	RUN 2 FEET 7 INCH
2. Enter rise:	
1 0 Inch 1 / 2 Rise	RISE 10-1/2 INCH
3. Find radius:	
Conv Arc	RAD 16-11/16 INCH
4. Find arc angle:	
Arc	ARC 136.46°
5. Find arc length:	
Arc	ARC 39-3/4 INCH
6. Find segment area:	
Arc Arc	SEG 235.7767 SQ INCH

Quality Products Online at: www.GlobalTestSupply.com

COMPOUND MITER

Compound Miter Cuts

You're installing crown moulding on the upper wall of your living room. If the wall corner angle is 60° and the crown angle is 38°, find the miter angle cut and blade tilt cuts.

KEYSTROKE
ILE I O IILOILE

DISPLAY

0.
CRWN STORED 38.00°

2.	Enter	wall	(corner)	angle	and c	calculate	miter	gauge	from 0	0.
	60	Comp Miter							∠ 0°	53.77°

- 3. Calculate miter gauge angle from 90°: Comp Miter ∠90° 36.23° 4. Calculate blade tilt angle:
- Comp MITR 32.22°
 - 5. Calculate butt blade tilt angle: Comp Miter
 - 6. Display stored crown angle: Comp Miter
 - 7. Display entered wall angle: Comp Miter

WALL 60.00°

CRWN STORED 38.00°

BUTT 45.92°

www.GlobalTestSupply.com Quality Products Online at: sales@GlobalTestSuppl

CONCRETE/PAVING

.....

X (4) Inch =

Volume of Concrete for a Driveway

Find the cubic yards of concrete required to pour a driveway with the following dimensions: 36 feet 3 inches long by 11 feet 6 inches wide by 4 inches deep. If concrete costs \$55 per cubic yard, what is the total cost?

KEYSTROKE	DISPLAY
1. Multiply the length times the width to find the are	a:
On/C On/C	0.
3 6 Feet 3 Inch	36 FEET 3 INCH
🗙 🗋 🚺 Feet 🙆 Inch	11 FEET 6 INCH
8	416.875 SQ FEET
2. Multiply times the depth to find the volume:	

*<u>Note</u>: This answer will automatically display in cubic yards due to the multiplication of mixed units, unless the preference setting for volume display has been changed from the default Standard Setting. (See Preference Settings on **page 89**.)

5.146605 CU YD*

Concrete Columns

Find the cubic yards of concrete required to pour five columns, if each has a diameter of 3 feet 4-1/2 inches and a height of 11 feet 6 inches. If the concrete weighs 1.75 tons per cubic yard, what is the total weight in tons? In pounds? In kilograms?

Conv (1) (kg)

Quality Products Online at:

Complex Concrete Volume

You're going to pour an odd-shaped patio 4-1/2 inches deep with the dimensions shown below. Calculate the total area (by dividing the drawing into three rectangles) and determine the total yards of concrete required. Then, find the total cost, if concrete costs \$45 per cubic yard.

KEYSTROKE

DISPLAY

1. Find area of Part A and store into Memory: On/C On/C 0. (2) (4) Feet (6) Inch — 24 FEET 6 INCH 7 Feet 17 FEET 6 INCH 🗙 (2) (7) Feet 🖃 472.5 SQ FEET M+ M+ 472.5 SQ FEET M 2. Find area of Part B and store into Memory: 7 Feet 7 FEET M 🗙 🥱 Feet 🚍 63. SQ FEET M M+ M+ 63. SQ FEET M 3. Find area of Part C and store into Memory: 9 Feet 9 FEET M 🗙 🥱 Feet 🚍 81. SQ FEET M M+ M+ 81. SQ FEET M (Cont'd) www.GlobalTestSupply.com **Quality Products Online at:** sales@GlobalTestSuppl

(Cont'd)

KEYSTROKE

- 4. Find total area and clear memory: RCI RCI
- 5. Find total cubic yards: X 4 Inch 1 / 2 =
- 6. Find total cost: **X** (4) (5) Conv (0) (Cost)

M+ 616.5 SQ FEET

8.5625 CU YD

\$385.31

Polygon, Finding Angles Based on Entered Radius and Number of Sides

You're going to pour a polygon-shaped patio. Find the polygon values if the radius is 15 feet and the number of sides is 6.

KEYSTROKE

DISPLAY

1. Enter radius and number of sides* to calculate the full angle:

On/C On/C
1 5 Feet Conv
6 Conv Run

Arc

0. RAD 15 FEET 0 INCH FULL 120.00*

2. Then calculate the bi-sect angle, side length, perimeter, and polygon area:

Run	HALF 60.00*
Run	SIDE 15 FEET 0 INCH
Run	PER 90 FEET 0 INCH
Run	AREA 584.5671 SQ FEET

*Note: You must enter more than 3 sides for a multi-sided polygon figure or the calculator will display "None."

Concrete Footings (NOT AVAILABLE ON TRIG MODEL #4080)

Find the volume of concrete required for a 16 inch by 8 inch footing that measures 232 feet 6 inches in length. Then find the volume of five columns of the same size.

KEYSTROKE	DISPLAY		
1. Calculate and store footing area: on/C On/C 1 6 Inch 🗙 8 Inch 😑 Stor 6	0. STORED F-AR 128. SQ INCH		
 2. Enter length and find footing volume: 2 3 2 Feet 6 (Inch Conv) Width 	: FTG 7.654321 си ур		
To find the volume of multiple footings of the same size, multiply times the total number of footings:			
 3. Multiply by 5 footings to find total cor X 5 € 	ncrete volume: 38.27161 כ ע צס		
4. Clear and return stored footing size t Conv X	to default: ALL CLEARED		

Quality Products Online at:

Squaring-up a Foundation

A concrete foundation measures 45 feet 6 inches by 23 feet 8 inches. Find the diagonal measurement (square-up) to ensure the form is perfectly square.

KEYSTROKE

Diag

- 1. Enter sides as rise/run:
 - 2 3 Feet 8 Inch Rise 4 5 Feet 6 Inch Run
- 2. Find the square-up (diagonal):

0. RISE 23 FEET 8 INCH

DISPLAY

RUN 45 FEET 6 INCH

DIAG 51 FEET 3-7/16 INCH

Alternative Method using I and With keys (NOT AVAILABLE ON TRIG MODEL #4080):

1. Enter sides as length and width:

On/C On/C	0.
2 3 Feet 8 Inch Length	LNTH 23 FEET 8 INCH
4 5 Feet 6 Inch Width	WDTH 45 FEET 6 INCH

2. Find the square-up (diagonal):

SQUP 51 FEET 3-7/16 INCH

Quality Products Online at:

Number of Drywall Sheets for a Given Area

Find the number of 4x8, 4x9 and 4x12 sheets to cover an area of 150 square feet.

KEYSTROKE	DISPLAY		
1. Enter area:			
On/C On/C	0.		
1 5 0 Feet Feet	150. SQ FEET		

2. Find the number of 4x8 sheets, 4x9 sheets and 4x12 sheets required:

Conv Height	4x8 4.6875
	(5 - 4x8 Sheets)
Height	4x9 4.166667
	(5 - 4x9 Sheets)
Height	4x12 3.125
	(4 - 4x12 Sheets)
Height	150 SQ FEET

Number of Drywall Sheets for a Given Length

Find the number of 4x8, 4x9 and 4x12 sheets to cover a length of 40 feet.

KEYSTROKE	DISPLAY
1. Enter length:	
On/C On/C	0.
	40 FEET

2. Find the number of 4x8 sheets, 4x9 sheets and 4x12 sheets required:

Conv Height	4x8 10.*
Height	4x9 10.
Height	4x12 10.

*It is the same amount for all three of the sheet sizes because it is based on length and not area.

<u>Note</u>: The order in which the different sheet size answers appear may differ from that of the guide. The order is based on the last displayed sheet size when previously calculated.

GRADE/SLOPE

Back-Fill on a Slope — Percent of Grade Known

You've built 55 linear feet of a 3-foot high retaining wall that is 3 feet from the base of a 65% grade. You need to pour back-fill within 12 inches of the top of the wall (for a 2 foot depth). How many cubic yards of fill should you have delivered?

RIGHT TRIANGLE AND ROOF FRAMING EXAMPLES

Quality Products Online at:

www.GlobalTestSupply.com

sales@GlobalTestSuppl

Roof Framing Definitions

Rise: The vertical distance measured from the wall's top plate to the top of the ridge.

Span: The horizontal distance or full width between the outside edges of the wall's top plates.

Run: The horizontal distance between the outside edge of the wall's top plate and the center of the ridge; in most cases this is equivalent to half of the span.

Pitch: Pitch and slope are synonymous in modern trade language. Pitch/slope of a roof is generally expressed in two types of measurement:

- 1) Ratio of unit rise to unit run* 7/12 or 7 inch
- 2) Angle of rafters, in degrees 30.26°

*<u>Note</u>: The unit rise is the number of inches of rise per foot (12 inches) of unit run. The unit run is expressed as one foot (12 inches).

Plate: The top horizontal wall member that the ceiling joist and rafters sit on and fasten to.

Ridge: The uppermost point of two roof planes. This rafter is the uppermost rafter that all Hip, Valley, Valley Jack and Common rafters are fastened to.

Rafters: Rafters are inclined roof support members. Rafters include the following types:

- **Common Rafter:** The Common connects the plate to the ridge and is perpendicular to the ridge.
- **Hip Rafter:** The Hip rafter extends from the corner of two wall plates to the ridge or King rafter at angle other than 90°. The Hip rafter is an external angle of two planes.
- Valley Rafter: The Valley rafter extends from the corner of two wall plates to the ridge or King rafter at angle other than 90°. The Valley rafter is an internal angle of two planes.
- Jack Rafters: Rafters that connect the Hip or Valley rafter to the wall plate.
- Irregular Hip/Valley Jacks: Jack rafters found in dual pitch or "irregular" roofs.

Regular Roof: A standard roof where the Hips and/or Valleys run at 45° and have the same pitch/slope on both sides of the Hip and/or Valley.

Irregular Roof: A non-standard roof where the Hips and/or Valleys bisect two different pitches/slopes, or have "skewed wings" or irregular Jacks.

Rake Wall: A gable end wall that follows the pitch/slope of a roof.

Plumb: Vertical Cut. The angle of cut from the edge of the board that allows the rafter to mate on the vertical side of the ridge rafter.

Level: Horizontal Cut. The angle of cut from the edge of the board that allows the rafter to seat flat on the wall plate.

Cheek: Side Cut(s). The angle to cut from the SIDE of the Jack rafter to match up against the Hip or Valley rafter, usually made by tilting the blade from 90°. Jack rafters typically have one Cheek cut. If there is only one pitch (no irregular pitch), the angle will be 45°. If there are two pitches, each side will have a different Cheek cut for the Jack rafter and the angles will total 90°.

Degree of Pitch

If the degree of pitch is 30.45°, what is the percent grade, slope and pitch in inches?

KEYSTROKE	DISPLAY
On/C On/C	0.
30•45 Pitch	PTCH 30.45°
Pitch	%GRD 58.78702
Pitch	SLP 0.58787
Pitch	PTCH 7-1/16 INCH

Note: To convert Pitch in Inches: Simply enter the pitch in inches first (e.g., (7) (neh (Pitch)), then continuously press the (Pitch key to calculate the pitch conversions, as above.

Percent Grade

If the percent grade is 47.25%, what is the slope, pitch in inches, and degree of pitch?

KEYSTROKE	DISPLAY	
On/C On/C	0.	
4 7 • 2 5 %* Pitch	%GRD 47.25	
Pitch	SLP 0.4725	
Pitch	PTCH 5-11/16 INCH	
Pitch	PTCH 25.29°	

*Note: For entering percent grade, you need to label the value with the percent key.

Pitch Ratio or Slope

If the pitch ratio is 0.65, what is the pitch in inches, degree of pitch, and percent grade?

KEYSTROKE	DISPLAY
On/C On/C	0.
• 6 5 Conv * Pitch	SLP 0.65
Pitch	PTCH 7-13/16
Pitch	PTCH 33.02°
Pitch	%GRD 65.

*Note: For entering pitch ratio, you must press the Conv key first.

Common Rafter Length

If a roof has a 7/12 pitch and a span of 14 feet 4 inches, what is the point-to-point length of the Common rafter (excluding the overhang or ridge adjustment)? What are the Plumb and Level cuts?

Note: Run is half the Span.

KEYSTROKE

DISPLAY

1. Find diagonal or point-to-point length of the Common rafter:

0 1 1	0	
On/C On/C		0.
7 Inch Pitch		PTCH 7 INCH
1 4 Feet 4 Inch 🕂 2 🚍		7 FEET 2 INCH
Run		RUN 7 FEET 2 INCH
Diag		DIAG 8 FEET 3-9/16 INCH

and I aval cute

2. r	-ind Plumb and Level culs.		
	Diag	PLMB	30.26°
	Diag	LEVL	59.74°
-			

Note: The Common rafter calculation is the "point-to-point" length and does not include the overhang or ridge adjustment.

Common Rafter Length — Pitch Unknown

Find the common rafter length for a roof with a rise of 6 feet 11-1/2 inches and a run of 14 feet 6 inches. Solve for the pitch in degrees and in inches.

KEYSTROKE	DISPLAY
Find diagonal and pitch:	
On/C On/C	0.
6 Feet 1 1 Inch 1 / 2 Rise	RISE 6 FEET 11-1/2 INCH
1 4 Feet 6 Inch Run	RUN 14 FEET 6 INCH
Diag	DIAG 16 FEET 1 INCH
Pitch	PTCH 5-3/4 INCH
Pitch	PTCH 25.64°

Angle and Diagonal (Hypotenuse)

Find the diagonal (hypotenuse) and degree of angle of a right triangle that is 9 feet high and 12 feet long.

KEYSTROKE	DISPLAY
1. Enter rise and run:	
On/C On/C	0.
9 Feet Rise	RISE 9 FEET 0 INCH
1 2 Feet Run	RUN 12 FEET 0 INCH

2. Solve for diagonal/hypotenuse and pitch in inches and degree of angle:

Diag	DIAG	15 FEET 0 INCH
Pitch		PTCH 9 INCH
Pitch		PTCH 36.87°

Rise

Find the rise given a 7/12 pitch and a run of 11 feet 6 inches.

KEYSTROKE	DISPLAY
On/C On/C	0.
7 Inch Pitch	PTCH 7 INCH
1 Feet 6 Inch Run	RUN 11 FEET 6 INCH
Rise	RISE 6 FEET 8-1/2 INCH

Rise and Diagonal

Find the rise and diagonal of a right triangle given a 30° pitch and a run of 20 feet 4 inches.

KEYSTROKE	DISPLAY
On/C On/C	0.
3 0 Pitch	PTCH 30.00°
2 0 Feet 4 Inch Run	RUN 20 FEET 4 INCH
Rise	RISE 11 FEET 8-7/8 INCH
Diag	DIAG 23 FEET 5-3/4 INCH

Sheathing Cut

You have framed an equal pitch roof and need to apply the roof sheathing. Find the distance from the corner of the sheathing so that you can finish the run at the Hip rafter and cut the material. The pitch is 6 inches and you are using 4-foot by 8-foot plywood, with the 8-foot side along the plate.

KEYSTROKE	DISPLAY
1. Enter pitch:	
On/C On/C	0.
6 Inch Pitch	PTCH 6 INCH
2. Enter width of plywood:	
(4) Feet Diag	DIAG 4 FEET 0 INCH
3. Find length of sheathing:	
Run	RUN 3 FEET 6-15/16 INCH

Regular Hip/Valley and Jack Rafters

You're working with a 7/12 pitch, and half your total span is 8 feet 5 inches:

- (1) Find point-to-point length and cut angles for the common rafter;
- (2) Find the length and cut angles of the adjoining Hip (or Valley) and;
- (3) Find the regular jack rafter lengths and cut angles (jack rafters at 16 inches on-center spacing).

KEYSTROKE

DISPLAY

1. Find Common rafter length and Plumb and Level cuts:

On/C On/C	0.
8 Feet 5 Inch Run	RUN 8 FEET 5 INCH
7 Inch Pitch	PTCH 7 INCH
Diag	DIAG 9 FEET 8-15/16 INCH
Diag	PLMB 30.26°
Diag	LEVL 59.74°

2. Find Hip/Valley rafter length and cut angles:

Hip/V	H/V 12 FEET 10-1/2 INCH
Hip/V	PLMB 22.42°
Hip/V	LEVL 67.58°
Hip/V	CHK1 45.00°

(Cont'd)

Quality Products Online at: www.GlobalTestSupply.com sales@GlobalTestSuppl

(Cont'd)

KEYSTROKE

3. Find Jack rafter lengths and cut angles:

Jack	JKOC 16 INCH*
Jack	JK1 8 FEET 2-3/8 INCH
Jack	JK2 6 FEET 7-7/8 INCH
Jack	JK3 5 FEET 1-3/8 INCH
Jack	JK4 3 FEET 6-13/16 INCH
Jack	JK5 2 FEET 0-5/16 INCH
Jack	JK6 0 FEET 5-13/16 INCH
Jack	JK7 0 FEET 0 INCH
Jack	PLMB 30.26°
Jack	LEVL 59.74°
Jack	CHK1 45.00°

*<u>Note</u>: If display does not read JKOC 16 INCH (the default), then reset on-center spacing by pressing 1 6 [nch Stor 5.

Jack Rafters — Using Other Than 16 Inch On-Center Spacing

A roof has a 9/12 pitch and a run of 6 feet 9 inches. Find the jack rafter lengths and cut angles at 18-inch (versus 16-inch) on-center spacing. The on-center spacing is used for both regular and irregular jack calculations.

KEYSTROKE	DISPLAY
1. Enter pitch, run and spacing:	
On/C On/C	0.
9 Inch Pitch	PTCH 9 INCH
6 Feet 9 Inch Run	RUN 6 FEET 9 INCH
1 8 Inch Stor 5	OC STORED 18 INCH
2. Find Jack rafter lengths and cut angles:	
Jack	JKOC 18 INCH
Jack	JK1 6 FEET 6-3/4 INCH
Jack	JK2 4 FEET 8-1/4 INCH
Jack	JK3 2 FEET 9-3/4 INCH
Jack	JK4 0 FEET 11-1/4 INCH
Jack	JK5 0 FEET 0 INCH
Jack	PLMB 36.87°
Jack	LEVL 53.13°
Jack	CHK1 45.00°
3. Reset on-center spacing to default 16-ind	ch:
1 6 Inch Stor 5	OC STORED 16 INCH

Quality Products Online at: www.GlobalTestSupply.com

You're working with a 7/12 pitch and half your overall span is 4 feet. The irregular pitch is 8/12, and 16 inch on-center spacing is maintained on both sides. Complete the following steps:

- (1) Find the length of the common rafter;
- (2) Reset calculator to 16 inch on-center spacing;
- (3) Enter the irregular pitch; find the length of the adjoining "irregular" Hip (or Valley) and the cut angles;
- (4) Find the jack lengths on the "irregular" pitch side (16 inch on-center spacing);
- (5) Find the cut angles;
- (6) Find the jack lengths on the "regular" pitch side (16 inch on-center spacing);
- (7) Find the cut angles.

KEYSTROKE

DISPLAY

0.

1. Find Common rafter length:

On/C On/C 7 Inch Pitch 4 Feet Run Diag

PTCH 7 INCH RUN 4 FEET 0 INCH DIAG 4 FEET 7-9/16 INCH

2. Enter on-center spacing: 1 6 Inch Stor 5

OC STORED 16 INCH

3. Find irregular Hip/Valley rafter length and cut angles:

8 Inch Conv Hip/V	IPCH 8 INCH
Hip/V	IH/V 5 FEET 9-11/16 INCH
Hip/V	PLMB 23.70°
Hip/V	LEVL 66.30°
Hip/V	CHK1 41.19°
Hip/V	CHK2 48.81°
	(Cont'd)

KEYSTROKE

4. Find irregular jack lengths:

i na niegulai jaen lengulei	
Conv Jack	IJOC 16 INCH
Jack *	IJ1 2 FEET 9-5/8 INCH
Jack	IJ2 1 FEET 4-13/16 INCH
Jack	IJ3 0 FEET 0 INCH

*<u>Note</u>: It is not necessary to continue pressing **Conv** when displaying each Jack rafter size.

5. Find irregular jack plumb, level and cheek cut angles:

Jack	U		U	PLMB	33.69°
Jack				LEVL	56.31°
Jack				CHK1	41.19°

6. Find regular jack lengths:

Jack	JKOC 16 INCH
Jack	JK1 2 FEET 10-3/8 INCH
Jack	JK2 1 FEET 1-1/4 INCH
Jack	JK3 0 FEET 0 INCH

7. Find regular jack plumb, level and cheek cut angles:

Jack	U	'	,	Ũ	PLMB	30.26°
Jack					LEVL	59.74°
Jack					CHK1	48.81°

Irregular Hip/Valley and Jack Rafters — *Ascending, with Jacks Mating at Hip/Valley*

You're working with a 7/12 pitch and half your overall span is 4 feet. The irregular pitch is 8/12, and the jacks need to mate at the Hip. The maximum allowable on-center spacing is 16 inches. Find the jack rafter sizes from smallest to largest (ascending order). Complete the following steps:

- Set Preference display to "JK ASCEND" (jack sizes in ascending order);
- (2) Set Preference display to "IRJK JAC-JAC" (jacks mate);
- (3) Find the length of the common rafter;
- (4) Find the length of the adjoining "irregular" Hip (or Valley) and the cut angles;
- (5) Find the o.c., jack lengths and cut angles on the "irregular" pitched side;
- (6) Find the o.c., jack lengths and cut angles on the "regular" pitched side.

<u>Note</u>: After completing this example, you may need to reset the Preferences back to "IRJK OC-OC" if you do not normally figure jacks in this manner. (See Preference Settings on **page 89**.)

KEYSTROKE	DISPLAY
1. Review Preferences until you find "Ja	nck Descend":
On/C On/C	0.
Conv Stor	FRAC 0-1/16 INCH
(If not at 1/16, press 🕀 until 1/16 is a	lisplayed)
Stor	AREA Std.
Stor	VOL Std.
Stor	HDRM 6 FEET 8 INCH
Stor	RAKE dESCEnd
Stor	JACK dESCEnd
Set Preference to "Ascend":	
🕒 (plus sign)	JACK ASCEnd
2. Set Preference to "Jacks Mate":	
Stor	IRJK OC-OC
🕒 (plus sign)	IRJK JAC-JAC
3. Find common rafter length: (7) Inch Pitch	PTCH 7 INCH
7 Inch Pitch (4) Feet Run	RUN 4 FEET 0 INCH
Diag	DIAG 4 FEET 7-9/16 INCH
Diag	DIAG 4 FEET 7-9/10 INCH
	(Cont'd)

Quality Products Online at:

(Cont'd)

KEYSTROKE

DISPLAY

4. Enter irregular pitch and find irregular Hip/Valley rafter length and cut angles:

8 Inch Conv Hip/V	IPCH 8 INCH
Hip/V	IH/V 5 FEET 9-11/16 INCH
Hip/V	PLMB 23.70°
Hip/V	LEVL 66.30°
Hip/V	CHK1 41.19°
Hip/V	CHK2 48.81°

5. Display the o.c. and find the irregular jack lengths and cut angles:

Conv Jack	IJOC 16 INCH*
Jack	IJ1 1 FEET 4-13/16 INCH
Jack	IJ2 2 FEET 9-5/8 INCH
Jack	IJ3 4 FEET 2-1/2 INCH
Jack	PLMB 33.69°
Jack	LEVL 56.31°
Jack	CHK1 41.19°

6. Find the o.c., regular jack lengths and cut angles:

Jack	JKOC 14 INCH*
Jack	JK1 1 FEET 6-1/2 INCH
Jack	JK2 3 FEET 1-1/16 INCH
Jack	JK3 4 FEET 7-9/16 INCH
Jack	PLMB 30.26°
Jack	LEVL 59.74°
Jack	CHK1 48.81°

7. Reset jack rafter Preference Settings:

On/C On/C Conv Stor Stor Stor Stor Stor Stor	0. JACK ASCEnd
Set Preference to "Descend": (plus sign)	JACK dESCEnd
Set Preference to "Jacks On-Center":	

Stor

Exit Preference Settings:

0.

*<u>Note</u>: The stored on-center spacing is used as the maximum allowable spacing. Therefore, it is assigned to the side with the largest entered pitch. In this example, the "irregular" side pitch is larger than the "regular" side pitch; thus, the irregular side is calculated using the maximum on-center value (16 inches). If the regular pitch side had the larger pitch, it would require the larger (16 inches) on-center.

www.GlobalTestSupply.com

IRJK JAC-JAC

IRJK OC-OC

Find each stud size in a rake-wall with a peak (rise) of 4 feet, and a length (run) of 8 feet. Use 16 inches as your spacing.

Note: The wall has no base.

KEYSTROKE

DISPLAY

1. Enter rise and run and display o.c. spacing:

On/C On/C	0.
4 Feet Rise	RISE 4 FEET 0 INCH
8 Feet Run	RUN 8 FEET 0 INCH
RCI (5)*	STORED OC 16 INCH

*If 16 inch is not displayed, enter 1 6 Stor 5.

2. Find stud lengths:

. i ma olaa longillo.	
Conv Rise (R/Wall)	RWOC STORED 16 INCH
Rise	RW 1 3 FEET 4 INCH
Rise	RW 2 2 FEET 8 INCH
Rise	RW 3 2 FEET 0 INCH
Rise	RW 4 1 FEET 4 INCH
Rise	RW 5 0 FEET 8 INCH
Rise	BASE 0 FEET 0 INCH

3. Find Rake-Wall angle of incline:

RW 26.57°

Note: By setting the Rake "Ascend" Preference (see Preference Settings on **page 90**), you may view rake-wall stud lengths from smallest to largest size.

<u>Note</u>: You can also solve if you only know the rise and pitch, run and pitch, or diagonal and pitch. Simply enter the known values via Pitch, Rise, Run, or Diag keys, similar to Step #1 above, then solve for rake-wall stud lengths, as seen in Step #2.

Rise

Rake-Wall – With Base

Find each stud size in a rake-wall with a peak (rise) of 4 feet, a length (run) of 8 feet, and a base of 5 feet. Use 16 inches as your on-center spacing.

KEYSTROKE

DISPLAY

1. Enter rise, run, and o.c. spacing:

 On/C
 O.
 0.

 ④ Feet Rise
 RISE 4 FEET 0 INCH
 8

 ⑧ Feet Run
 RUN 8 FEET 0 INCH
 RCI 5*

*If 16 inch is not displayed, enter 1 6 Inch Stor 5.

2. Enter base and recall on-center spacing, then find stud lengths and angle of incline:

5 Feet Conv Rise (R/Wall)	RWOC STORED	16 імсн
Rise	RW 1 8 FEET	4 INCH
Rise	RW 2 7 FEET	8 INCH
Rise	RW 3 7 FEET	0 INCH
Rise	RW 4 6 FEET	4 INCH
Rise	RW 5 5 FEET	8 INCH
Rise	BASE 5 FEET	0 INCH
Rise	RW	26.57°

ROOFING MATERIALS

The Roof function solves for the amount of bundles and squares for standard gable-end style roofs. Bundles are based on a coverage area of 33.33 square feet, and squares are based on 100 square feet.

Roof Covering — Entering Pitch, Length and Width

Find the roof area and number of roofing squares, number of bundles and 4x8 sheets required for a 10-inch pitch roof covering a floor area of 14 feet by 11 feet. Also calculate the plan area.

KEYSTROKE	DISPLAY
1. Enter pitch and floor area*: on/c on/c 1 0 (nch Pitch	0. РТСН 10 ілсн
1 (4) Feet Length 1 1 Feet Width	LNTH 14 FEET 0 INCH WDTH 11 FEET 0 INCH
2. Find roof area: Conv Digg	ROOF 200.4631 SQ FEET
3. Find number of roofing squares:	SQRS 2.00
4. Find number of bundles:	BNDL 6.01
5. Display bundle size/area:	B-SZ 33.33 SQ FEET
6. Find number of 4x8 sheets:	4X8 6.26
7. Display stored pitch:	PTCH STORED 10 INCH
8. Find floor/plan area: Diog	PLAN 154. SQ FEET

*<u>Note</u>: If you know the area (and do not need to calculate it), once you have entered the pitch, enter the area and label it as square feet, then press Conv Digs. For example, if the plan/floor area is 100 square feet, enter 1 0 0 Feet Feet Conv Digs.

For Trig Model (4080) Users:

*<u>Note</u>: As this model does not have term and with keys, you must calculate area the standard way (e.g., L x W, or entering 154 square feet), then press **Conv Diog**.

Quality Products Online at: www.GlobalTestSupply.com

Roof Covering — Entering Rise, Run (No Pitch) and Area

Find the roof covering, pitch and plan area if the rise is 15 feet and run 30 is feet. The length of the floor area is 10 feet and width 20 feet.

KEYSTROKE

DISPLAY

1. Enter rise, run, length and width*:

On/C On/C		0.
1 5 Feet Rise	RISE	15 FEET 0 INCH
3 0 Feet Run	RUN	30 FEET 0 INCH
1 0 Feet Length*	LNTH	10 FEET 0 INCH
2 0 Feet Width*	WDTH	20 FEET 0 INCH

2. Find roof area, number of roofing squares, number of bundles, stored bundle size, number of 4x8 sheets, pitch and plan area:

Conv Diag	ROOF 223.6068 SQ FEET
Diag	SQRS 2.24
Diag	BNDL 6.71
Diag	B-SZ 33.33 SQ FEET
Diag	4X8 6.99
Diag	PTCH 6 INCH
Diag	PLAN 200. SQ FEET

For Trig Plus Users:

*<u>Note</u>: As this model does not have length and width keys, you must calculate area the standard way (e.g., L x W, or entering 200 square feet), then press **Conv Digs**.

STAIR LAYOUT EXAMPLES

Stair Layout Definitions

Rise: The "floor-to-floor" or "landing-to-landing" rise is the actual vertical rise required for building a stairway after the finish flooring has been installed.

Run: The run of a stairway is the amount of horizontal space required. The total run of a stairway is equal to the width of each tread multiplied by the number of treads.

Desired Riser Height: The desired riser height is the amount of vertical rise you allow for each individual riser in the stairway. This is sometimes dictated by local code.

Actual Riser Height: The actual height of each riser is measured from the top of one tread to the top of the next tread.

Number of Risers: The number of risers includes both the first and the last riser of the stairway.

Riser Overage or Underage: The riser overage or underage is the difference between the "floor-to-floor" rise and the total height of all of the risers. Many times the riser height does not divide evenly into the floor-to-floor rise and a small fraction of an inch is left over. A positive remainder is an overage, while a negative remainder is an underage.

Tread Width: The width of each tread is measured from the front of one riser to the front of the next riser. The width of each tread does NOT include the nosing or overhang of the tread. The nosing or overhang of a tread is the rounded front of the tread that projects beyond the face of the riser.

Number of Treads: The number of treads is one less than the number of risers.

Tread Overage or Underage: The tread overage or underage is the difference between the run or horizontal space that a stairway must fit into and the total width of the treads. Similar to the riser overage/underage, many times the total width of the treads does not divide evenly into the run or horizontal space for the stairway and a small fraction of an inch is left over. A positive remainder is an overage, a negative remainder is an underage.

Stringers: Also called carriages, stair horses or stair jacks. Stringers are the diagonal members that support the treads and risers.

Angle of Incline: The angle of incline of the stairway is determined by the rise and run of each stair. The angle of incline should not be confused with the pitch of the stairway. The pitch of a stairway is the angle based on the floor-to-floor rise and the horizontal run of the stairway. The angle of incline is based on the "actual" riser height and the "actual" tread width of the stair.

Stairwell Opening: The length of the opening at the top of the stairs. The computation is based on the headroom height (the desired spacing between the stairs and upper floor ceiling) and thickness of the upper floor where the opening is located.

Stairs — Given Only Floor-to-Floor Rise

You're building a stairway with a total rise of 9 feet 11 inches. Your desired riser height is 7-1/2 inches and desired tread width is 10 inches. The desired headroom is 6 feet 8 inches and floor thickness 10 inches*. Find all stair values, then calculate the run.

*<u>Note</u>: Headroom and floor thickness are required to calculate the length of the stairwell opening.

KEYSTROKE	DISPLAY
1. Enter known rise: On/C On/C 9 Feet 1 1 Inch Rise	0. RISE 9 FEET 11 INCH
2. Recall stored desired stair riser heigh	t: R-HT STORED 7-1/2 INCH
3. Recall stored desired stair tread width (RC) (9)	T-WD STORED 10 INCH
4. Recall stored desired floor thickness:	FLOR STORED 10 INCH
5. Display stored headroom (via Prefere Conv Stor Stor Stor Stor	nce Setting Mode): HDRM 6 FEET 8 INCH

6. Find riser height, number of risers, riser underage/overage, tread width, number of treads, tread overage/underage, length of stairwell opening, stringer length and angle of incline. As a final step, calculate the run.

Stair	R-HT 7-7/16 INCH
Stair	RSRS 16.
Stair	R+/- 0 INCH
Stair	T-WD 10 INCH
Stair	TRDS 15.
Stair	T+/- 0 INCH
Stair	OPEN 10 FEET 1 INCH
Stair	STRG 15 FEET 6-15/16 INCH
Stair	INCL 36.64°
Stair	RUN 12 FEET 6 INCH
Stair *	RISE STORED 9 FEET 11 INCH

*Continuous presses of State will also recall stored desired riser height, tread, headroom and floor thickness values.

Notes on Changing Stored Stair Variables:

To Change Desired Riser Height: If you wish to use a Desired Riser Height of <u>other</u> than 7-1/2 inches (the calculator's default), simply enter a new value. For example, to enter 8 inches, enter 8 **(net)** Stor 7. Press **RC** 7 to review your new entry. This value will be permanently stored until you change it.

To Change Desired Tread Width: If you wish to use a Desired Tread Width of <u>other</u> than 10 inches (the calculator's default), simply enter a new value. For example, to enter 10-1/2 inches, enter 1 () (net) 1 (2) (Stor 9). Press (RC) 9 to review your new entry. This value will be permanently stored until you change it.

To Change Desired Floor Thickness: If you wish to use a Desired Floor Thickness of <u>other</u> than 10 inches (the calculator's default), simply enter a new value. For example, to enter 12 inches, enter 1 (2) [Inch Stor (8). Press (RC) (8) to review your new entry. This value will be permanently stored until you change it.

To Change Desired Headroom: If you wish to use a Desired Headroom <u>other</u> than 6 feet 8 inches (the calculator's default), simply select a new value via the Preference Mode and use the **①** or **〇** keys to increase/decrease by one inch. See below examples. This value will be permanently stored until you change it.

KEYSTROKE	DISPLAY
1. Select Headroom via Preference Mode:	0.
Conv Stor Stor Stor Stor	HDRM 6 FEET 8 INCH
2. Decrease Headroom Height by 2 Inches:	HDRM 6 FEET 6 INCH
3. Then increase Headroom Height by 4 Inche	es: HDRM 6 FEET 10 INCH
4. Return Headroom Height to default of 6 fee	et 8 inches: HDRM 6 FEET 8 INCH

Stairs — Given Only the Run

You're building a stairway with a total run of 20 feet. Your desired riser height is 7-1/2 inches and desired tread width is 10 inches. The desired headroom is 6 feet 8 inches and floor thickness 10 inches. Find all stair values, then calculate the rise.

KEYSTROKE	DISPLAY
1. Enter run: on/c on/c	0.
(2) (0) Feet Run	RUN 20 FEET 0 INCH
2. Find riser height, number of rise width, number of treads, tread ove stringer length and angle of incline. Stair Stair Stair Stair Stair Stair Stair Stair Stair Stair Stair	rage/underage, stairwell opening, As a final step, calculate the rise. R-HT 7-1/2 INCH RSRS 25. R+/- 0 INCH T-WD 10 INCH TRDS 24. T+/- 0 INCH OPEN 10 FEET 0 INCH STRG 25 FEET 0 INCH INCL 36.87° STORED RUN 20 FEET 0 INCH
Stair	RISE 15 FEET 7-1/2 INCH

Quality Products Online at:

Stairs — Given Rise and Run

You need to build a stairway with a floor-to-floor height of 10 feet 1 inch, a run of 15 feet 5 inches, and a nominal desired riser height of 7-1/2 inches (default). Calculate all stair values.

KEYSTROKE	DISPLAY
1. Enter rise and run:	
On/C On/C	0.
1 0 Feet 1 Inch Rise	RISE 10 FEET 1 INCH
1 5 Feet 5 Inch Run	RUN 15 FEET 5 INCH
2. Find stair values:	
Stair	R-HT 🗥 7-9/16 INCH*
Stair	RSRS 16.
Stair	R+/- 0 INCH
Stair	T-WD 12-5/16 INCH
Stair	TRDS 15.
Stair	Т+/ 0-5/16 ілсн
Stair	OPEN 12 FEET 2-1/2 INCH
Stair	STRG 18 FEET 0-3/4 INCH
Stair	INCL 31.56°
Stair	RUN STORED 15 FEET 5 INCH
Stair	RISE STORED 10 FEET 1 INCH
Stair	R-HT STORED 7-1/2 INCH
Stair	T-WD STORED 10 INCH
Stair	HDRM STORED 6 FEET 8 INCH
Stair	FLOR STORED 10 INCH

*A ${\rm \Delta}$ in the display means that the calculated riser height exceeds the stored desired riser height.

Stairs — Given Rise and Run, Using "Riser Limited" Function for Code Restrictions

Your local code prohibits risers greater than 7-1/2 inches. You need to build a stairway with a floor-to-floor height of 10 feet 1 inch, a run of 15 feet 5 inches. Calculate all stair values. Use the "Riser Limited" function (second function of the Store key) to calculate a riser height that does not exceed the stored Desired Riser Height of 7-1/2."

KEYSTROKE	DISPLAY
1. Enter rise and run:	
On/C On/C	0.
1 0 Feet 1 Inch Rise	RISE 10 FEET 1 INCH
1 5 Feet 5 Inch Run	RUN 15 FEET 5 INCH
2. Find stair values using "Riser Lim	ited":
Conv Stair	R-HT 7-1/8 INCH
Stair	RSRS 17.
Stair	R+/- 1/8 інсн
Stair	T-WD 11-9/16 INCH
Stair	TRDS 16.
Stair	Т+/- 0 ілсн
Stair	OPEN 12 FEET 2-1/16 INCH
Stair	STRG 18 FEET 1-5/16 INCH
Stair	INCL 31.64°
Stair	RUN STORED 15 FEET 5 INCH
Stair	RISE STORED 10 FEET 1 INCH
Stair	R-HT STORED 7-1/2 INCH
Stair	T-WD STORED 10 INCH
Stair	HDRM STORED 6 FEET 8 INCH
Stair	FLOR STORED 10 INCH

Baluster Spacing

You are going to install a handrail at the top of a balcony. Your total span is 156 inches and you would like the space between the balusters to be about 4 inches. If each baluster is 1-1/2 inches wide, what is the exact spacing between each baluster?

KEYSTROKE	DISPLAY
1. Estimate number of balusters in span.	0.
1 5 6 Inch 🕂	156 INCH
5 (nch 1) 🖊 2 🚍*	28.36364
	(28 balusters)
*desired spacing plus baluster width (4" plus 1-1/2").	
2. Find total space 'occupied' by the balusters by multiplying the width of each baluster by the rounded number of balusters (found above):	
(1) (Inch (1) 🖊 (2) 🗙	1-1/2 імсн
	42 INCH
3. Find total space between all balusters:	
1 5 6 Inch 🚍	156 INCH
(4) (2) (Inch) =	114 ілсн
4. Find actual baluster spacing by dividing total space	e between all

4. Find actual baluster spacing by dividing total space between all balusters by the number of spaces between the balusters (number of balusters plus one equals 29):

1 1 4 Inch 🕂	•	,	114 імсн
298			3-15/16 ілсн

STUDS

Find the number of 16-inch on-center studs needed for a wall with a length of 18 feet 7-1/2 inches.

KEYSTROKE

DISPLAY

1. Enter length and convert to Studs*.

On/C On/C
1 8 Feet 7 Inch 1 / 2
Conv 5

0. 18 FEET 7-1/2 INCH 15. (studs)

*<u>Note</u>: The length is divided by the on-center spacing; in this case, 16 inches (default setting). Press **RCI 5** to review the stored on-center value. If you need to enter a new on-center, for example 18 inches, enter **1 8 Inch Stor 5**.

BASIC D:M:S AND TRIGONOMETRY EXAMPLES

Converting Degrees:Minutes:Seconds

Convert 23°42'39" to decimal degrees:

KEYSTROKE	DISPLAY
On/C On/C	0.
23•42•39	DMS 23.42.39
$\texttt{Conv} \ \overline{\bullet} \ (deg)$	DEG 23.71

Convert 44.29° to degrees:minutes:seconds format:

KEYSTROKE	DISPLAY
On/C On/C	0.
4 4 • 2 9 Conv • (d:m:s)	DMS 44.17.24
Note: Improperly formatted entries will be redisplayed in	the correct convention after

<u>Note</u>: Improperly formatted entries will be redisplayed in the correct convention after any operator key is pressed. For example, 30°89' entered will be corrected and displayed at 31°29' 0" or 31.48333°.

Time Calculations Using D:M:S

Add 7 hours 45 minutes 33 seconds to 11 hours 16 minutes 20 seconds:

KEYSTROKE	DISPLAY
On/C On/C	0.
7 • 4 5 • 3 3	DMS 7.45.33°
$\bigcirc \bigcirc $	DMS 19.01.53°

Trigonometric functions are available on the *Construction Master Pro Trig* and *Construction Master Pro Desktop* calculators.

The drawing and formulas below list basic trigonometric formulas, for your reference:

Quality Products Online at:

Converting Percent Grade to D:M:S

KEYSTROKE

You are grading a piece of property and the site plans call for an embankment with a grade "no steeper than 35%." Your level shows the slope at an 18°15' angle. Will this pass?

Enter grade and convert to degrees:minutes:seconds:

On/C On/C 3 5 % Conv [7an Conv] ●* DMS	0. 19.17.24
Since your level reading of 18°15' is less steep than 19°17' slope will pass inspection.	
Converting Tangent/Pitch to Angle	
Find the angle and corresponding tangent for a roof with an	8/12 pitch.
KEYSTROKE	DISPLAY
1. Enter pitch: On/C On/C (3) Inch Pitch PT(0. CH 8 INCH
2. Convert pitch to degrees: Plich	33.69°
3. Find tangent or slope:	0.666667
Converting Roof Angle in Degrees to Pitch in Inches	
Convert a roof angle of 30.25° to pitch in inches.	
KEYSTROKE	DISPLAY
1. Enter angle: on/c on/c	0.

Plich	33.69°
3. Find tangent or slope:	0.666667
Converting Roof Angle in Degrees to Pitch in I	nches
Convert a roof angle of 30.25° to pitch in inches.	
KEYSTROKE	DISPLAY
1. Enter angle: on/c on/c 3 0 ● 2 5 con	0. 0.583183
2. Convert to pitch: Conv Pitch Pitch	SLP 0.583183 PTCH 7 INCH

Quality Products Online at:

www.GlobalTestSupply.com

DISPLAY

Angle — Rise and Hypotenuse Known

Find the angle that connects the rise and hypotenuse of a right triangle, if the rise is 6 feet and the hypotenuse is 10 feet in length.

KEYSTROKE	DISPLAY
1. Use trigonometric formula (divide rise(A) by hypotenuse	e(C)):
On/C On/C	0.
6 Feet 🕂 1 0 Feet =	0.6
2. Solve for degrees:minutes:seconds or angle:	
Conv Cos D	EG 53.13°
Conv OMS	53.07.48

APPENDIX A — DEFAULT SETTINGS

After a *Clear All* (Conv X), your calculator will return to the following settings:

STORED VALUES	DEFAULT VALUE
Desired Riser Height	7-1/2 Inch
Desired Tread Width	10 Inch
Floor Height	10 Inch
On-Center Spacing	16 Inch
Weight per Volume	1.5 Tons/Cu Yd
Block Area (except Trig model)	128 Sq Inch
Footing Area (except Trig model)	1.8 Sq Feet
Crown Angle	45.00°

If you replace your batteries or perform a *Full Reset*^{*} (press \bigcirc , hold down \bigotimes , and press \bigcirc), your calculator will return to the following settings (in addition to those listed above):

PREFERENCE SETTINGS	DEFAULT VALUE
Fractional Resolution	1/16
Area Display	Standard
Volume Display	Standard
Stairway Headroom	6 Feet 8 Inch
Rake Wall	Descending
Jack Rafters	Descending
Irregular Jack Spacing	00-00
Exponent	Off
Meter Linear Display	0.000
Decimal Degree Display	0.00°

*Depressing the Reset button located above the Pich key will also perform a Full Reset.

APPENDIX B — PREFERENCE SETTINGS

The *Construction Master Pro* calculators have Preference Settings that allow you to customize or set desired dimensional formats and calculations. The options vary per model.

If you replace your batteries or perform a *Full Reset*^{*} (press \bigcirc , hold down \bigotimes , and press \bigcirc), your calculator will return to the following settings (in addition to those listed on the previous page):

PREFERENCE	OPTIONS
1) Fractional Resolution	 *1/16 (displays fractional values to the nearest 16th of an inch) 1/32 1/64 1/2 1/4 1/8
2) Area Display Format	 *Standard (if units entered are the same—e.g., feet x feet—the answer will remain in this format (sq. ft), but if units entered are different —e.g., inches x feet—area answer will be displayed in square feet) Square Feet (area answers always displayed in sq. ft, regardless of unit entry—e.g., inches x inches = sq. ft) Square Yards (area answers always displayed in sq. yards—e.g., feet x feet = sq. yds) Square Meters (area answers always displayed in sq. meters—e.g., feet x feet = sq. yds)

Note: To check the current Fractional Resolution, press Re D. Either "Std" (standard fractional resolution) or "Cnst" (constant) will be displayed, along with the fractional resolution).

(Cont'd)

(Cont'd)

PREFERENCE	OPTIONS
3) Volume Display Format	 *Standard (if units entered are the same—e.g., ft x ft x ft—the answer will remain in this format (cu. ft), but if units entered are different—e.g., feet x feet x inches—vol. answer will always be displayed in cubic yards) Cubic Yards (vol. answers always displayed in cu. yards, regardless of unit entry—e.g., feet x feet x feet = cu. yds) Cubic Feet (vol. answers always displayed in cu. feet, regardless of unit entry—e.g., inches x inches x inches = cu. ft) Cubic Meters (vol. answers always displayed in cu. meters, regardless of unit entry—e.g., feet x feet x feet = cu. yds)
4) Stairwell—Headroom Height	 *6 Feet 8 Inch (default) Use or key to increase or decrease above value by increments of 1 inch
5) Rake-Wall Descending or Ascending	 *Descending (Rake-Wall studs are displayed from largest to smallest size) Ascending (Rake-Wall studs are displayed from smallest to largest size)
6) Jack Rafters Descending or Ascending	 *Descending (Jack rafters are displayed from largest to smallest size) Ascending (Jack rafters are displayed from smallest to largest size)
7) Irregular Jack Rafters O-C or Mate	 *OC-OC (on-center spacing maintained on both regular and irregular sides) JAC-JAC (regular/irregular Jack rafters "mate" at the hip/valley, i.e., on-center spacing not maintained on both sides) (Cont'd)

Quality Products Online at: www.GlobalTestSupply.com

(Cont'd)

PREFERENCE	OPTIONS
8) Exponent Off or On	 *Off (Exponential Mode is Off; turns on Auto-ranging; i.e., if display can't show seven digits, will display in next largest unit). On (Exponential Mode is On)
9) Meter Linear Display	 *0.000 (linear meter answers are always displayed to third decimal place) FLOAT (linear meter answers are displayed to the maximum number of decimal places—e.g., 1.234 M + 2.56 M=3.794 M)
10) Decimal Degree Display	– *0.00° – FLOAT

How to Set Preferences

The following sections detail Preference Setting options for the *Construction Master Pro* calculators.

Enter the Preference Mode by pressing Conv Stor (*Prefs*). Access each category by pressing the Stor key until you reach the desired setting. Within each category, press the + or - keys to toggle between individual selections. Press Once to exit and set your Preference.

<u>Note</u>: Press **1** to advance and press **2** to back up. Pressing the **Stor** key continuously in this mode will cycle through all of the Preference Settings.

You may change these settings at any time by repeating the above, and setting in a new preference. Or, you may review settings by pressing Rel Stor.

To clear preferences, press Conv 🗙.

For example, if you wish to display all your dimensional area answers in square meters, press **Conv Stor Stor** (*Area Std*), then the **H** key until **"AREA 0. so m**" is displayed. Simply exit this mode by pressing **Once** or any key, and all your future area answers will be displayed in square meters.

(See the following pages for Preference Settings per model)

KEYSTROKE	DISPLAY
To Set "Fractional Resolution":	
Conv Stor (Prefs) (1st press of Stor)	FRAC 0-1/16 INCH
🕒 (plus sign)	FRAC 0-1/32 INCH
0	FRAC 0-1/64 INCH
0	FRAC 0-1/2 INCH
0	FRAC 0-1/4 INCH
0	FRAC 0-1/8 INCH
To Set "Area" Answer Format:	
Stor (2nd press of Stor)	AREA Std.
(plus sign)	AREA 0. SQ FEET
\mathbf{O}°	AREA 0. SQ YD
0	AREA 0. SQ M
To Set "Volume" Answer Format:	
Stor (3rd press of Stor)	VOL Std.
(plus sign)	VOL 0. CU YD
•	VOL 0. CU FEET
0	VOL 0. CU M
To Increase or Decrease Stairwell "Headroom Stor (4th press of Stor) ⊕* (plus sign increases height by 1 inch) ●* (minus sign decreases height by 1 inch)	HDRM 6 FEET 8 INCH HDRM 6 FEET 9 INCH
*keep pressing plus or minus to increase or decrease an	inch at a time.
To Set Rake-Wall Stud Sizes to "Descending"	or "Ascendina":
Stor (5th press of Stor)	RAKE dESCEnd
(plus sign)	RAKE ASCEnd
To Set Jack Rafter to "Descending" or "Ascen	dina"·
Stor (6th press of Stor)	JACK dESCEnd
(our prece er ())	JACK ASCEnd
	or "Moto":
To Set Irregular Jack Spacing to "On-Center" (Stor (7th press of Stor)	IRJK OC-OC
(plus sign)	IRJK JAC-JAC
To Set "Exponential Mode" On or Off:	
Stor (8th press of Stor)	EXP OFF
🕒 (plus sign)	EXP On
	(Cont'd)
	, , ,

Quality Products Online at: www.GlobalTestSupply.com

sales@GlobalTestSuppl

(Cont'd)

KEYSTROKE	DISPLAY
To Set "Meter" Linear Decimal Format:	
Stor (9th press of Stor)	METR 0.000 м
🕒 (plus sign)	METR FLOAT M
To Set "Number of Decimal Places for Degree	Displays":
Stor (10th press of Stor)	DEG 0.00°
🕒 (plus sign)	DEG FLOAT

Note: Press Once at any time to exit the Preference Mode.

APPENDIX C — CARE INSTRUCTIONS

Please follow the guidelines listed in this section for proper care and operation of your calculator. Not following the instructions listed below may result in damage not covered by your warranty. Refer to the Repair and Return section on **page 100** for more details.

Do not expose calculator to temperatures outside the operating temperature range of $32^{\circ}F - 104^{\circ}F$ ($0^{\circ}C - 40^{\circ}C$).

Do not expose calculator to high moisture such as submersion in water, heavy rain, etc.

APPENDIX D — IMPORTANT NOTES FOR OWNERS OF PREVIOUS CONSTRUCTION MASTERS

If you are an owner of a previous *Construction Master* calculator, the following list will help you compare several new or enhanced features available on selected *Construction Master Pro* calculators.

NEW/ENHANCED FUNCTION	DESCRIPTION
Arched Rake Walls	 Calculates the arched rake wall stud lengths using the Arc function (8th press of (Arc).
Compound Miter	 Calculates compound miter cut angle solutions.
Drywall	 Calculates the number of 4x8, 4x9, or 4x12 sheets by pressing Conv Height.
Length, Width, Height	 Length, width, and height keys added for easier dimensional entry and quicker area, volume, square-up, perimeter, wall area, and total room area calculations.
Memory	 Added a third permanent single-value memory accessed by pressing Sor 3.
Polygon	 Polygon function added for solving angles, side length, perimeter, and area of multi-sided shapes.
Riser Limited	 Calculates stair values so that the actual riser height will not exceed your stored desired riser height.
Stairwell Opening	 Calculates the height of the opening at the top of the stairs.
Stud	 New construction project keys have been added for quickly figuring quantities and costs of materials.

APPENDIX E — ACCURACY/ERRORS, AUTO SHUT-OFF, BATTERIES, RESET

ACCURACY/ERRORS

Accuracy/Display Capacity — Your calculator has a twelve-digit display made up of eight digits (normal display) and four fractional digits. You may enter or calculate values up to 19,999,999.99. Each calculation is carried out internally to ten digits.

Errors — When an incorrect entry is made, or the answer is beyond the range of the calculator, it will display the word "**ERROR**." To clear an error condition you must hit the **Orc** button once. At this point you must determine what caused the error and re-key the problem.

Error Codes

DISPLAY	ERROR TYPE
OFLO	Overflow (too large)
MATH Error	Divide by 0
DIM Error	Dimension error
ENT Error	Invalid entry error
TRIG Error	Trig. error (for example, tan of 1 foot)
None	Attempt to calculate stairs without enter-
	ing rise or run

Auto-Range — If an "overflow" is created because of an input and calculation with small units that are out of the standard seven-digit range of the display, the answer will be automatically expressed in the next larger units (instead of showing "**ERROR**") — e.g., 10,000,000 mm is shown as 10,000 m. Also applies to inches, feet and yards.

<u>Note</u>: If Exponential Notation is activated through the Preference Setting, the value will be shown in scientific notation (e.g., 10 million mm—1.000007 mm).

AUTO SHUT-OFF

Your calculator is designed to shut itself off after about 8-12 minutes of non-use.

BATTERIES

• Construction Master Pro v3.0 (#4065) and Construction Master Pro Trig v3.0 (#4080)

Two LR-44 batteries.

• Construction Master Pro Desktop v3.0 (#44080) One 3-Volt Lithium CR-2032 battery.

Replacing the Battery(ies)

Should your calculator display become very dim or erratic, replace the battery(ies).

<u>Note</u>: Please use caution when disposing of your old battery, as it contains hazardous chemicals.

Replacement batteries are available at most discount or electronics stores. You may also call Calculated Industries at 1-775-885-4975.

Battery Replacement Instructions

- The Hand-held Models
 - Construction Master Pro v3.0 (#4065)
 - Construction Master Pro Trig v3.0 (#4080)

To replace the batteries, slide open the battery door (at top backside of unit) and replace with new batteries. Make sure the batteries are facing positive side up.

• Construction Master Pro Desktop v3.0 (#44080):

To replace the battery, use a small Phillips' head screwdriver and unscrew the two (2) screws on the base of the unit. Carefully remove the lower back housing. Remove the battery from the clip and replace it with a new battery, with the positive side up. Then replace the backplate and reattach the screws.

RESET KEY

If your calculator should ever "lock up," press Reset — a small hole located to the left (or right for the *Construction Master Pro Desktop*) of the *Mey* — to perform a total reset.

APPENDIX F — AREA/VOLUME FORMULAS

AREA FORMULAS

Quality Products Online at:

SURFACE AREA/VOLUME FORMULAS

Quality Products Online at:

REPAIR AND RETURN

WARRANTY, REPAIR AND RETURN INFORMATION

Return Guidelines

- Please read the <u>Warranty</u> in this User's Guide to determine if your Calculated Industries calculator, measuring device or electronic tool remains under warranty <u>before</u> calling or returning any device for evaluation or repairs.
- If your calculator won't turn on, try pressing the **Reset** button first. If it still won't turn on, check the batteries as outlined in the User's Guide.
- 3. If there is a black spot on the LCD screen, <u>THIS IS NOT A</u> <u>WARRANTY DEFECT</u>. The unit can be repaired. Call for a repair quote before returning your unit.
- If you need more assistance, please go to our website at www.calculated.com and click on Support, then Repair Services FAQs.
- **5.** If you believe you need to return your calculator, please speak to a Calculated Industries representative for additional information!

WARRANTY

Warranty Repair Service – U.S.A.

Calculated Industries ("CI") warrants this product against defects in materials and workmanship for a period of **one (1) year from the date of original consumer purchase in the U.S.** If a defect exists during the warranty period, CI at its option will either repair (using new or remanufactured parts) or replace (with a new or remanufactured calculator) the product at no charge.

THE WARRANTY **WILL NOT APPLY** TO THE PRODUCT IF IT HAS BEEN DAMAGED BY MISUSE, ALTERATION, ACCIDENT, IMPROPER HANDLING OR OPERATION, OR IF UNAUTHORIZED REPAIRS ARE ATTEMPTED OR MADE. SOME EXAMPLES OF DAMAGES NOT COVERED BY WAR-RANTY INCLUDE, BUT ARE NOT LIMITED TO, BATTERY LEAKAGE, BENDING, OR VISIBLE CRACKING OF THE LCD, WHICH ARE PRE-SUMED TO BE DAMAGES RESULTING FROM MISUSE OR ABUSE.

To obtain warranty service in the U.S., ship the product postage paid to Calculated Industries (address listed on the last page). Please provide an explanation of the service requirement, your name, address, day phone number and dated proof of purchase (typically a sales receipt). If the product is over 90 days old, include payment of \$6.95 for return shipping and handling within the contiguous 48 states. (Outside the contiguous 48 states, please call CI for return shipping costs.)

A repaired or replacement product assumes the remaining warranty of the original product or 90 days, whichever is longer.

Non-Warranty Repair Service – U.S.A.

Non-warranty repair covers service beyond the warranty period, or service requested due to damage resulting from misuse or abuse.

Contact Calculated Industries at the number listed above to obtain current product repair information and charges. Repairs are guaranteed for 90 days.

Repair Service – Outside the U.S.A.

To obtain warranty or non-warranty repair service for goods purchased outside the U.S., contact the dealer through which you initially purchased the product. If you cannot reasonably have the product repaired in your area, you may contact CI to obtain current product repair information and charges, including freight and duties.

Quality Products Online at: www.GlobalTestSupply.com

sales@GlobalTestSuppl

Disclaimer

CI MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE PRODUCT'S QUALITY, PERFOR-MANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PUR-POSE. AS A RESULT, THIS PRODUCT, INCLUDING BUT NOT LIMITED TO, KEYSTROKE PROCEDURES, MATHEMATICAL ACCURACY AND PREPROGRAMMED MATERIAL, IS SOLD "AS IS," AND YOU THE PUR-CHASER ASSUME THE ENTIRE RISK AS TO ITS QUALITY AND PER-FORMANCE.

IN NO EVENT WILL CI BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE PRODUCT OR ITS DOCUMENTATION.

The warranty, disclaimer, and remedies set forth above are exclusive and replace all others, oral or written, expressed or implied. No CI dealer, agent, or employee is authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific rights, and you may also have other rights, which vary from state to state.

FCC Class B

This equipment has been certified to comply with the limits for a Class B calculating device, pursuant to Subpart J of Part 15 of FCC rules.

Legal Notes

Software copyrighted and licensed to Calculated Industries by Construction Master Technologies, LLC, 2004.

User's Guide copyrighted by Calculated Industries, Inc., 2004.

Construction Master® and Calculated Industries® are registered trademarks of Calculated Industries, Inc.

PATENT PENDING

ALL RIGHTS RESERVED

Designed in the U.S.A.

Looking For New Ideas

Calculated Industries, a leading manufacturer of special-function calculators and digital measuring instruments, is always looking for new product ideas in these areas.

If you have an idea, or a suggestion for improving this product or User's Guide, please submit your comments online at: www.calculated.com under "Contact Us," "Product Idea." Thank you.

INDEX

Accuracy/Errors, 96 Adding Linear Measurements, 37 Angle - Rise and Hypotenuse Known, 87 Angle and Diagonal (Hypotenuse), 65 Arc Lenath. 47. 48 Arched Windows, 50 Area and Volume Kevs. 11 Area Calculations, 39 Area, Rectangular, 39 Area, Square, 39 Area/Volume, 99 Auto Shut-Off, 96 Baluster Spacing, 83 Basic Math with Dimensions. 32 Basic Operation Kevs. 8 Batteries, 97 Battery(ies), Replacing, 97 Block/Brick Keys, 13, 43 Blocks, Number of, Based on Calculated Area, 43 Blocks, Number of, Based on Calculated Perimeter, 44 Blocks, Number of, Based on Entered Area, 43 Blocks, Number of, Based on Length, 44 Board Feet - With Dollar Cost. 46 Board Feet, Number of, Based on Entered Volume, 46 Bricks (Face), Number of, 45 Bricks (Paver), Number of, 45 Center Point, Finding, 38 Circular/Arc Function Kevs. 13 Circumference and Area of a Circle, 47 Column/Cone Kev. 15 Common Rafter Length, 64 Common Rafter Length - Pitch Unknown, 64 Compound Miter/Crown Moulding Keys, 15 Concrete (Driveway), Volume, 52 Concrete Columns, 53 Concrete Footings, 56 Concrete Volume, Complex, 54 Concrete/Paving, 52 Cone, Volume, 41 Construction Master, New Features, 95 Construction Project Keys, 13 Conversions, Area, 31 Conversions, Linear, 30 Conversions, Volume/Cubic, 31 Conversions, Weight, 42 Conversions/Weight per Volume, 42 Convert Conv Key, 8 Convert Degree of Pitch, 63 Convert Percent Grade, 63 Converting Decimal Feet to Feet-Inches-Fractions, 30 Converting Decimal Inches to Fractional Inches, 31 Converting Degrees: Minutes: Seconds, 84 Converting Feet-Inches-Fractions to Decimal Feet, 30 Converting Fractional Inches to Decimal Inches, 31 Converting Percent Grade to D:M:S, 85 Converting Roof Angle in Degrees to Pitch in Inches, 87

Converting Tangent/Pitch to Angle, 87 Cutting Boards, 37 Cylinder, Volume, 41 Default Settings, 88 Degrees: Minutes: Seconds, Converting, 84 Dimensional Measurement Unit Keys, 10 Dimensions (Linear), Entering, 25 Dimensions (Square/Cubic), Entering, 25 Dimensions, Adding, 32 Dimensions, Dividing, 32 Dimensions, Multiplying, 32 Dimensions, Subtracting, 32 Drywall, 58 Drywall Keys (Not Available on Trig Model #4080), 16 Drywall Sheets, Number of (For a Given Area), 58 Drywall Sheets, Number of (For a Given Length), 58 Entering Dimensions, 25 Error Codes, 96 Examples, 37 Footing Keys, 16 Grade/Slope, 59 Hip/Valley and Jack Rafter Keys, 18 Hip/Valley Rafter, 19 Irregular Pitch, 19 Irregular Side Jacks, 20 Jack Rafters, 19 Irregular Hip/Valley and Jack Rafters, 68, 70 Jack Rafters - Using Other Than 16 Inch, 67 Lumber Estimation, 46 Memory and Storage Functions, 9 Memory Operation, 33 Multi-Function Height Example, 40 Multi-Function Width Example, 39 Paperless Tape Operation, 35 Percentage Calculations, 33 Pitch Ratio, 63 Polygon Key, 16 Preference Settings, Appendix B, 89 Preferences, How to Set, 91 Rake-Wall Function, 20 Rake-Wall - No Base, 72 Rake-Wall - With Base, 73 Recall Rcl Key, 10 Regular Hip/Valley and Jack Rafters, 66 Reset Key, 97 Right Triangle and Roof Framing, 60 Right Triangle/Roof Framing Keys, 17 Rise, 65 Rise and Diagonal, 65 Roof Covering - Entering Pitch, Length and Width, 74 Roof Covering – Entering Rise, Run (No Pitch) and Area, 75 Roof Framing Definitions, 61 Roof Materials/Covering Keys, 21, 74 Sheathing Cut, 66 Squaring-Up a Foundation, 57 Stair Key, 21 Stair Layout Definitions, 76 Stair Layout Examples, 76 Stairs – Given Only Floor-to-Floor Rise, 78

Stairs - Given Only the Run, 80 Stairs - Given Rise and Run, 81 Stairs - Given Rise and Run, Using "Riser Limited" Function for Code Restrictions, 82 Studs, Number of, 84 Time Calculations Using D:M:S, 84 Trigonometric Keys (Trig #4080 and Desktop #44080 Models only), 23 Volume Calculations, 40 Volume, Concrete Columns, 53 Volume, Concrete (Complex), 54 Volume, Concrete (Driveway), 52 Volume, Rectangular Containers, 40 Warranty, 101 Warranty Repair Service, 100 Weight Keys, 12 Window Measurement, 38

4065UG-E-B

3/04

Quality Products Online at:

www.GlobalTestSupply.com sales@GlobalTestSuppl

Designed in the United States of America Printed in China 2/04

4065UG-E-B

Quality Products Online at: www.GlobalTestSupply.com sales@GlobalTestSuppl