F4T/D4T Flex Module Quick Start Guide

High Density Input/Output Modules FMHA-

Powered by Possibility

Made in the U.S.A.
November 2016
Available F4T/D4T Literature and Resources

Document Title and Part Number	Description
F4T Installation and Trou- bleshooting User Guide, part number: 0600-0092- 0000	Provides detailed specifications and infor- mation regarding mounting the base, flex module wiring and troubleshooting.
F4T Setup and Operations	Explains how to configure and operate the device for an application using Composer software as well as the user interface (touch screen). Includes detailed descrip- tions of all device features and parameter settings.
0600-0093-0000	

Installation and Wiring

To install the flex module:

1. Note the part number to determine the number and type of inputs or outputs available to be connected in step 7 .
2. Turn off device power.
3. Select a compatible base slot for the module. See the Flex Module-Slot Dependencies table below. If replacing a module, remove the old module.
4. Affix corresponding slot number labels (provided) to the module and to the removable screw terminal block.

Safety Information

We use caution symbols where needed within this document to draw your attention to important operational and safety information.
A "CAUTION" safety alert appears with information that is important for protecting your equipment and performance. Be especially careful to read and follow all cautions that apply to your application.
A "WARNING" safety alert appears with information that is important for protecting you, others and equipment from damage. Pay very close attention to all warnings that apply to your application.
The electrical hazard symbol, (a lightning bolt in a triangle) precedes an electric shock hazard CAUTION or WARNING safety statement. Further explanations follow:

Symbol	Explanation
CAUTION orElectrical Shock Hazard	CAUTION - Warning or Hazard that needs fur- ther explanation than label on unit can provide. Consult QSG for further information.
WARNING	

Document Overview

The purpose of this Quick Start Guide (QSG) is to acquaint the user with the F4T/ D4T High Density (HD) Flex Modules and associated wiring.

Product Overview

Flex modules serve as the interface between real-world devices and the F4T/ D4T system. The flex modules described in this document offer various input and output options and greater density (more than 1) than the standard flex modules. With the exception of the Dual SSR module, all of these modules can be placed in any available slot.
5. With the component side of the module facing right (viewing the F4T/ D4T from the rear) insert the module into the slot until it latches.
6. Remove the screw terminal block from the module.
7. Wire field devices to the appropriate terminals. Wiring details for each input and output are provided in the following sections.
8. Reconnect the wired screw terminal block to the module. Be sure to recon-nect the terminal block to the correct module.
9. Restore power to the F4T/ D4T.

Note:

If the flex module is a replacement with the same part number and slot position, the F4T/ D4T uses it immediately when powered up. Otherwise, use Composer software to configure the F4T/D4T to ex-pect and use the module.

Flex Module - Slot Dependencies						
Module Type	Slot \#					
	1	2	3	4	5	6
Dual SSR * FMHA-K	Y	Y	N	Y	Y	N
Communications FMCA-(2)	N	N	N	N	N	Y
All Other Modules	Y	Y	Y	Y	Y	Y
$Y=$ Allowed $\quad N=$ Not allowed * Reguires two adjacent slots						

Module Characteristics
 Description and Identification

Many of the modules appear to look alike at first glance, therefore, it is always recommended that the module part number be verified prior to plugging it into any of the available slots in a base. Each module is identified with a part number located on the back side of the assembly next to the screw terminal block, as displayed in the graphic to the right.

Wiring

Prior to wiring any of the $1 / 0$ modules described in this document, it is rec-ommended that the warnings and notes listed below be reviewed.

CAUTION: 4

To prevent damage to the F4T/ D4T, do not connect wires to unused terminals.

Note:
Maintain electrical isolation between the analog input, digital input-outputs, switched dc/ open collector outputs and process outputs to prevent ground loops.

Note:

Modules IP10 when properly installed in base enclosure with slot caps in empty slots.

CAUTION: \ Quencharc Note:

Switching pilot duty inductive loads (relay coils, solenoids, etc.) with the mechanical relay, solid-state relay or open collector output options requires use of an R.C. suppressor for AC load or a diode for a DC load.
AVERTISSEMENT: les charges inductives de commutation de lampes témoins (bobines de relais, solénoïdes, etc.) avec des options de sortie à relais mécanique, de relais statique ou collecteur ouvert requièrent un dispositif anti parasite R.C.

Note:

Wire size and torque for screw terminations:

- 0.0507 to $3.30 \mathrm{~mm}^{2}$ (30 to 12 AWG) single-wire termination or two $1.31 \mathrm{~mm}^{2}$ (16 AWG)
- 0.57 Nm (5.0 lb.-in.) torque

FMHA - [R]AAA-A_

- Grounded or ungrounded sensors, greater than $20 M \Omega$ input impedance, $2 \mathrm{k} \Omega$ source resistance max
- $3 \mu \mathrm{~A}$ open-sensor detection
- Thermocouples are polarity sensitive. The negative lead (usually red) must be connected to S terminal
- To reduce errors, the extension wire for thermocouples must be of the same alloy as the thermocouple

Input Connections (cont.)
RTD
FMHA - [R] A A A - A _ _

- Platinum, 100 and $1 \mathrm{k} \Omega$ @ $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ calibration to DIN curve ($0.00385 \Omega / \Omega /{ }^{\circ} \mathrm{C}$)
- RTD excitation current of 0.09 mA typical. Each ohm of lead resistance may affect the reading by $2.55^{\circ} \mathrm{C}$ for a 100Ω platinum sensor or $0.25^{\circ} \mathrm{C}$ for a $1 \mathrm{k} \Omega$ sensor (see table to right)

AWG	Ohms/ $\mathbf{1 0 0 0 f t}$
14	2.575
16	4.094
18	6.510
20	10.35
22	16.46
24	26.17
26	41.62
28	66.17

Process

FMHA - [R] A A A - A

- 0 to 20 mA @ 100Ω input impedance
- 0 to $10 \mathrm{~V}=$ (dc) @ $20 \mathrm{k} \Omega$ input impedance
- 0 to $50 \mathrm{mV}=$ (dc) @ $20 \mathrm{M} \Omega$ input impedance
- Scalable

Potentiometer	FM [M, L] A - [C, L, Y, R] _ A -
	- Potentiometer: 0 to $1.2 \mathrm{k} \Omega$

Output Connections

Six Digital Outputs

- $>20 \mathrm{M} \Omega$ input impedance
- 0 to $40 \mathrm{k} \Omega, 0$ to $20 \mathrm{k} \Omega, 0$ to $10 \mathrm{k} \Omega, 0$ to $5 \mathrm{k} \Omega$
- $2.252 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ base at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$
- User-selectable curves for Alpha Technics, Beta THERM and YSI
- User-scaling support for Steinhart-Hart coefficients

Thermistor Curve Setting	Base R @ $25^{\circ} \mathrm{C}$	Alpha Technics	Beta Therm	YSI
Curve A	2.252k	Curve A	2.2k3A	004
Curve B	10k	Curve A	10k3A	016
Curve C	10k	Curve C	10k4A	006
Custom	Use Steinhart-Hart equation coefficients (A, B and C) from thermistor manufacturer corresponding to the terms of the Steinhart-Hart equation:$1 / T=A+B \ln (R)+C(\ln (R))^{3}$			

Open Collector open collectorvol

- 400 mA , maximum
S
Open Collector
- Maximum switched
open collector volt-
age is $32 \mathrm{~V}=$ (dc)
400mA, maximum
open circuit voltage
of $25 \mathrm{~V}=(\mathrm{dc})$, typical
$8 \mathrm{~V}=$ (dc) at 80 mA
- Maximum output sink
current per output is
1.5A (external class
2 or SELV* supply re-
quired)
- Total sink current for
all outputs not to ex-
ceed 8 A
- Do not connect out-
puts in parallel
* Safety Extra Low
Voltage

Switched DC

- User selectable voltage, $5 \mathrm{~V}=$ (dc) at 130 mA or 19 to $22 \mathrm{~V}=$ (dc) at 80 mA

Maximum switched open circuit voltage of 25 V = (dc), typical $8 \mathrm{~F}=$ (dc) at 80 mA current per output is 1.5A (external class 2 or SELV* supply required)

- Total sink current for all outputs not to exceed 8A
Do not connect outin paralle
* Safety Extra Low Voltage

Output Connections (cont.)

Four Mechanical Relays, Form A

> FMHA - [J] A A A - A

Note:

Not 60730 compliant.

- 5A at 240V~ (ac) or 30V= (dc) maximum resistive load
- 20 mA at 24 V minimum load
- 125 VA pilot duty @ 120/240V~ (ac), 25 VA at 24 V ~ (ac)
- 100,000 cycles at rated load
- Output does not supply power.
- For use with ac or dc
- See Quencharc note (page 4)

Output Connections (cont.)

*Dual 10A Solid-State Relays, Form A FMHA - $[K]$ A A A - A _ _

- Do not use on dc loads.
- Requires two slots
*Note:
This module requires 2 slots, therefore it cannot be placed in slot 3 or 6 .

Note:

Not 60730 compliant.

Output Connections (cont.)
3 Mechanical Relays, 2 Form C, 1 Form A FMHA - $[B]$ A A A - A

Warranty

F4T/ D4T Flex modules are manufactured by ISO 9001 registered processes and are backed by a three-year warranty to the first purchaser for use, providing that the modules have not been misapplied.

(CST)

This F4T/ D4T Quick Start Guide (QSG) is copyrighted by Watlow Electric Manufacturing Company, © November 2016 with all rights reserved.

Symbol	Explanation
Unit is compliant with European Union directives. See	
Declaration of Conformity for further details on direc-	
tives and standards used for compliance.	

Specifications

Input Type	Max Error @ 25 Deg C	Accuracy Range		Operating Range		Units
		Low	High	Low	High	
*	+1.75	0	750	-210	1200	Deg C
*K	+2.45	-200	1250	-270	1371	Deg C
$\begin{gathered} \text { *T }(-200 \text { to } \\ 350) \end{gathered}$	± 1.55	-200	350	-270	400	Deg C
N	+2.25	0	1250	-270	1300	Deg C
*E	+2.10	-200	900	-270	1000	Deg C
R	± 3.9	0	1450	-50	1767	Deg C
S	± 3.9	0	1450	-50	1767	Deg C
B	+2.66	870	1700	-50	1816	Deg C
C	± 3.32	0	2315	0	2315	Deg C
D	± 3.32	0	2315	0	2315	Deg C
F (PTII)	+2.34	0	1343	0	1343	Deg C

Specifications (cont.)

Input Type	$\begin{aligned} & \text { Max Error @ } \\ & 25 \text { Dea C } \end{aligned}$	Accuracy Range		Operating Range		Units
		Low	High	Low	High	
*RTD, 100	+2.00	-200	800	-200	800	Deg C
RTD, 1k	+2.00	-200	800	-200	800	Deg C
mV	± 0.05	0	50	-- -	---	mV
Volts	± 0.01	0	10	-- -	---	Volts
mAdc	± 0.02	2	20	--	---	mA DC
mAac	± 5	-50	50	-- -	-- -	mA AC
Potentiometer 1 k range	± 1	0	1000	--	--	Ohms

*NSF approved inputs

Thermistor Input				
Input Type	Max Error @ 25 Deg C	Accuracy Range		Units
	Low	High		
Thermistor, 5k range	± 5	0	5000	Ohms
Thermistor, 10k range	± 10	0	10000	Ohms
Thermistor, 20k range	± 20	0	20000	Ohms
Thermistor, 40k range	± 40	0	40000	Ohms

Declaration of Conformity
Series EZ-ZONE ${ }^{\circledR}$ Flex Modules

Flex Modules are considered components and have no function in and of themselves, it is only when installed in a Watlow EZ-ZONE ${ }^{\otimes}$ CC, Series F4T or Series D4T Base enclosure that they have useful function. Modules were tested as parts of these systems for compliance with the following directives.

Per 2012/19/EU W.E.E.E Directive Please Recycle Properly. See the Declarations of Conformity for Watlow EZ-ZONE ${ }^{\circledR}$ CC, Series F4T and Series D4T models for further details on standards used for compliance.

Joe Millanes
Name of Authorized Representative
Directory of Operations

Winona, Minnesota, USA
Place of Issue
April 20, 2016
$\frac{\text { April 20, } 2016}{\text { Date of Issue }}$

