MI3

Miniature Infrared Sensor

Operating Instructions

Rev. G4 Aug/2022 4652494

WARRANTY

The manufacturer warrants this product to be free from defects in material and workmanship under normal use and service for the period of two years from date of purchase, except as hereinafter provided. This warranty extends only to the original purchaser (a purchase from the manufacturer or a licensed distributor of the manufacturer is an original purchase). This warranty shall not apply to fuses, batteries, or any product which has been subject to misuse, neglect, accident, or abnormal conditions of operation.

In the event of failure of a product covered by this warranty, the manufacturer will repair the instrument when it is returned by the purchaser, freight prepaid, to an authorized Service Facility within the applicable warranty period, provided manufacturer's examination discloses to its satisfaction that the product was defective. The manufacturer may, at its option, replace the product in lieu of repair. With regard to any covered product returned within the applicable warranty period, repairs or replacement will be made without charge and with return freight paid by the manufacturer, unless the failure was caused by misuse, neglect, accident, or abnormal conditions of operation or storage, in which case repairs will be billed at a reasonable cost. In such a case, an estimate will be submitted before work is started, if requested.

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS, OR ADEQUACY FOR ANY PARTICULAR PURPOSE OR USE. THE MANUFACTURER SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, WHETHER IN CONTRACT, TORT, OR OTHERWISE.

SOFTWARE WARRANTY

The manufacturer does not warrant that the software described herein will function properly in every hardware and software environment. This software may not work in combination with modified or emulated versions of Windows operating environments, memory-resident software, or on computers with inadequate memory. The manufacturer warrants that the program disk is free from defects in material and workmanship, assuming normal use, for a period of one year. Except for this warranty, the manufacturer makes no warranty or representation, either expressed or implied, with respect to this software or documentation, including its quality, performance, merchantability, or fitness for a particular purpose. As a result, this software and documentation are licensed "as is," and the licensee (i.e., the user) assumes the entire risk as to its quality and performance. The liability of the manufacturer under this warranty shall be limited to the amount paid by the User. In no event shall the manufacturer be liable for any costs including but not limited to those incurred as a result of lost profits or revenue, loss of use of the computer software, loss of data, the cost of substitute software, claims by third parties, or for other similar costs. The manufacturer's software and documentation are copyrighted with all rights reserved. It is illegal to make copies for another person.

Specifications subject to change without notice.

COMPLIANCE STATEMENT

The device complies with the requirements of the European Directives:

EC - Directive 2014/30/EU - EMC

EC – Directive 2014/35/EU – Iow voltage valid for device: Ex Power Supply xxxMI3ACIS

EC – Directive 2011/65/EU – RoHS Compliance amended by Directive (EU) 2015/863

EC –Directive 2014/34/EU – ATEX valid for device: xxxMI3xxxISx, xxxMI330xxxISx, xxxMI3100xxxISx, xxxMI3xxLTHISx, xxxMI3ACIS

EC – Directive Nr. 1907/2006 – REACH amended by Directive (EU) 2020/2096

EN 61326-1: 2013 Electrical measurement, control and laboratory devices -

Electromagnetic susceptibility (EMC)

EN 61558-1: 2006 Safety Requirements for power transformers, power supplies, reactors and

similar products (low voltage)

EN 61558-2-6: 2010 Safety Requirements for power transformers, power supplies, reactors and

similar products for use up to 1.1 kV (low voltage)

EN 50581: 2012 Technical documentation for the evaluation of electrical products with respect

to restriction of hazardous substances (RoHS)

EN 60079-0: 2019 Risk of explosion – part 0: general requirements (ATEX)

EN 60079-11: 2012 Risk of explosion – part 11: device protection by intrinsic safety "I" (ATEX)

Conforms to UK Conformity. Except for units with intrinsically-safe rating.

Electromagnetic Compatibility Applies to use in Korea only. Class A Equipment (Industrial Broadcasting & Communication Equipment) This product meets requirements for industrial (Class A) electromagnetic wave equipment and the seller or user should take notice of it. This equipment is intended for use in business environments and is not to be used in homes.

Content

COMPLIANCE STATEMENT	5
CONTENT	6
1 SAFETY INSTRUCTIONS	11
2 DESCRIPTION	
2.1 Overview Comm Boxes····	13
3 TECHNICAL DATA	
3.1 Measurement Specification	
3.1.1 Sensing Heads	14
3.1.2 Comm Box	
3.1.2.1 Comm Box (metal)	
3.1.2.2 Comm Box (DIN)	
3.2 OPTICAL CHARTS	
3.3 ELECTRICAL SPECIFICATION	
3.3.1 Comm Box, all models	
3.3.2 Comm Box (metal)	
3.3.3 Comm Box (DIN 6TE, analog)	
3.4 ENVIRONMENTAL SPECIFICATION	
3.4.1 Sensing Head	
3.4.2 Comm Box (metal)	
3.4.4 LTH Electronics	
3.4.4 LTH Electronics	
3.5.1 Sensing Head LT, G5	
3.5.2 Sensing Head LTH	
3.5.3 Sensing Head 1M, 2M	
3.5.4 Comm Box (metal)	
3.5.5 Comm Box (DIN)	
3.6 Scope of Delivery	
3.6.1 Sensing Head	
3.6.2 Comm Box	
4 BASICS	
4.1 MEASUREMENT OF INFRARED TEMPERATURE	
4.2 EMISSIVITY OF TARGET OBJECT	
4.3 Ambient Temperature	
4.4 ATMOSPHERIC QUALITY	
4.5 ELECTRICAL INTERFERENCE······	
5 INSTALLATION	
5.1 Positioning	
5.1.1 Distance to Object	
5.2 Installation Schemes	
5.2.1 Comm Box (metal)	
5.2.2 Comm Box (DIN)	
3.3 WIKING, FEAD CABLE	26

5.3.1 Comm Box (metal)	2
5.3.2 Comm Box (DIN)	
5.4 Wiring, Terminal	28
5.4.1 Comm Box (metal)	28
5.4.2 Comm Box (DIN 3TE)	29
5.4.3 Comm Box (DIN 4 TE)	30
5.4.4 Comm Box (DIN 6 TE)	
5.4.5 EMI Resistance for Comm Box (DIN)	34
5.5 Power On Procedure	3
5.5.1 One Head System	3
5.5.2 Multiple Heads – Random Address Assignment	3
5.5.3 Multiple Heads – User Controlled Address Assignment	
5.6 USB	36
5.7 FIELDBUS·····	38
5.7.1 Addressing	38
5.7.2 RS485 based Installations	
6 OUTPUTS	3(
6.1 Analog Output OUT1	
6.2 Analog Output OUT2	
6.3 Analog Outputs OUT1 - OUT4	
6.4 ALARM OUTPUT RELAY	
6.5 THERMOCOUPLE OUTPUT TC·······	
7 INPUTS	
7.1 EMISSIVITY (ANALOG)	
7.1 EMISSIVITY (ANALOG)	
7.3 BACKGROUND TEMPERATURE COMPENSATION	
7.3 BACKGROUND TEMPERATURE COMPENSATION	
7.5 Laser Switching	
8 OPERATION	
8.1 Control Panel	
8.2 < HEAD > PAGE ·····	
8.3 <box setup=""> Page ·····</box>	
8.4 <box info=""> Page ·····</box>	
8.5 Post Processing	
8.5.1 Averaging	
8.5.2 Peak Hold	
8.5.3 Valley Hold	
8.5.4 Advanced Peak Hold	
8.5.5 Advanced Valley Hold	
8.5.6 Advanced Peak Hold with Averaging	
8.5.7 Advanced Valley Hold with Averaging	5
9 OPTIONS	
9.1 Water Cooled Housing (1M, 2M Heads)	56
9.1.1 Avoidance of Condensation	
9.2 Intrinsic Safety	58
9.2.1 Sensing Heads	58

9.2.2 Ex Power Supply	
9.2.2.1 Ex Power Supply for non-hazardous areas	59
9.2.3 Installation	
9.2.4 Mains Supply	62
10 ACCESSORIES	64
10.1 Accessories (all models) ·····	64
10.1.1 Multi-Channel Box	64
10.1.2 USB/RS485 Adapter	
10.2 Accessories (LT, G5 Heads)	68
10.2.1 Adjustable Mounting Bracket	
10.2.2 Fixed Mounting Bracket	70
10.2.3 Air Purge Jacket	70
10.2.4 Air Cooling System	71
10.2.5 Right Angle Mirror	
10.2.6 Protective Windows	
10.2.7 Close Focus Lens	
10.3 Accessories (1M, 2M Heads) ·····	
10.3.1 Fixed Mounting Bracket	
10.3.2 Adjustable Mounting Bracket	
10.3.3 Isolation Kit	
10.3.4 Air Purge Collar	
10.3.5 Right Angle Mirror	
10.3.6 Protective Window	83
11 MAINTENANCE	84
11.1 Troubleshooting Minor Problems	
11.2 Fail-Safe Operation	
11.3 Cleaning the Lens	
11.4 Sensing Head Exchange ·····	86
12 DATATEMP MULTIDROP SOFTWARE	87
12.1 Software Features	
12.2 PC REQUIREMENTS	87
12.3 USB Driver Installation	87
12.4 Software Launch ·····	87
13 RS485	88
13.1 Wiring	
13.1.1 Comm Box (metal)	
13.1.2 Comm Box (DIN)	
13.2 ASCII Programming	
14 PROFIBUS	
14.1.1 Comm Box (metal)	
14.1.2 Comm Box (DIN)	
14.1.2 Cullin bux (DIN)	
14.2.1 Parameter Data	
14.2.2 Input Data	
14.2.3 Output Data	
1 1.2.0 Output Data	

14.2.4 Diagnose Data	
15 MODBUS	98
15.1 Wiring	9{
15.1.1 Comm Box (metal)	
15.1.2 Comm Box (DIN)	
15.2 Programming	
15.2.1 Supported Functions	
15.2.2 Parameter Data	
15.2.2.1 Box Parameter	
15.2.2.2 Head Parameter	102
16 ETHERNET	104
16.1 Wiring	104
16.1.1 Comm Box (metal)	10-
16.1.2 Comm Box (DIN)	
16.2 Addressing	
16.2.1 MI3	
16.2.2 PC Network Adapter	
16.3 ASCII Programming	
16.4 HTTP SERVER ······	
16.4.1 Data Logging	
17 PROFINET	11(
17.1 Wiring	
17.1.1 Status LED	
17.2 Programming	
17.2.1 I/O Device Configuration	
17.2.1.1 GSD File	
17.2.1.2 Configuration	
17.2.2 Parameter Setting	
17.2.2.1 Parameters of the Fieldbus Communicator	
17.2.2.2 Parameters of the Pyrometer Module	
17.2.3 Input Data Structure	
17.2.3.1 Input Data of Fieldbus Communicator	115
17.2.3.2 Input Data of Pyrometer Module	115
17.2.4 Output Data Structure	
17.2.5 Diagnostics	11
18 ASCII PROGRAMMING	11
18.1 Transfer Modes ·····	
18.2 Command Structure	
18.3 Addressing ·····	118
18.4 Device Information ·····	119
18.5 DEVICE SETUP ·····	119
18.5.1 Temperature Calculation	
18.5.2 Temperature Pre-Processing	
18.5.3 Emissivity Setting and Alarm Set points	
18.5.4 Post Processing	
18.6 DYNAMIC DATA······	
18.7 Device Control·····	

18.7.1 Output for the Target Temperature	121
18.7.2 Analog Output, Scaling	121
18.7.3 Alarm Output	121
18.7.4 Factory default values	
18.7.5 Lock Mode	
18.7.6 Mode Setting for the Digital Input FTC3	122
18.7.7 Ambient Background Temperature Compensation	
18.8 Command Set	122
18.8.1 ASCII Commands for Ethernet and Profinet	128
19 APPENDIX	129
19.1 DETERMINATION OF EMISSIVITY	
19.2 Typical Emissivity Values ·····	129
19.3 ATEX CERTIFICATE OF CONFORMITY FOR SENSING HEADS	133
19.4 ATEX CERTIFICATE OF CONFORMITY FOR EX POWER SUPPLY	136
19.5 IECEx Certificate of Conformity for Sensing Heads	139
19.6 IECEx Certificate of Conformity for Ex Power Supply	
20 NOTES	147

1 Safety Instructions

This document contains important information, which should be kept at all times with the instrument during its operational life. Other users of this instrument should be given these instructions with the instrument. Eventual updates to this information must be added to the original document. The instrument should only be operated by trained personnel in accordance with these instructions and local safety regulations.

Acceptable Operation

This instrument is intended only for the measurement of temperature. The instrument is appropriate for continuous use. The instrument operates reliably in demanding conditions, such as in high environmental temperatures, as long as the documented technical specifications for all instrument components are adhered to. Compliance with the operating instructions is necessary to ensure the expected results.

Unacceptable Operation

The instrument should not be used for medical diagnosis.

Replacement Parts and Accessories

Use only original parts and accessories approved by the manufacturer. The use of other products can compromise the operational safety and functionality of the instrument.

Instrument Disposal

Disposal of old instruments should be handled according to professional and environmental regulations as electronic waste.

Operating Instructions

The following symbols are used to highlight essential safety information in the operation instructions:

Helpful information regarding the optimal use of the instrument.

Warnings concerning operation to avoid instrument damage and personal injury.

The instrument can be equipped with a Class 2 laser. Class 2 lasers shine only within the visible spectrum at an intensity of 1 mW. Looking directly into the laser beam can produce a slight, temporary blinding effect, but does not result in physical injury or damage to the eyes, even when the beam is magnified by optical aids. At any rate, closing the eye lids is encouraged when eye contact is made with the laser beam. Pay attention to possible reflections of the laser beam. The laser functions only to locate and mark surface measurement targets. Do not aim the laser at people or animals.

Pay particular attention to the following safety instructions.

Use in 110/230 V~ electrical systems can result in electrical hazards and personal injury, if not properly protected. All instrument parts supplied by electricity must be covered to prevent physical contact and other hazards at all times.

2 Description

The MI3 sensor series is the next generation of the well-established "MI class" sensor platform. It will be capable of covering a broad range of applications. The MI3 sensor series introduces various network communications, an externally accessible user interface, improved temperature measurement specifications and capabilities at an economic price.

The MI3 series comes with the following highlights:

- Rugged sensing heads survive ambient temperatures to 120°C (248°F) including optimized performance due to ambient temperature calibration across full ambient temperature range
- Special high ambient temperature heads available withstanding up to 180°C (356°F) without any cooling (LTH models)
- Multi head system architecture to allow multiple sensing heads to be multiplexed from a single communication box
- Stand-alone OEM sensing head operation
- Intrinsically safe sensing head with Ex Power Supply for installation in hazardous areas (ATEX)
- Precision high resolution optics up to 100:1
- Up to 10 ms response time
- · Alarm status indicator
- Standard USB 2.0 digital interface
- Analog outputs with galvanic isolation
- Alarm relay output
- Serial RS485 communication interface with the protocols: ASCII, Profibus, Modbus^{®1}
- Ethernet communication interface with the protocols: ASCII, http, Profinet IO
- Automatic sensing head identification
- Includes DataTemp® Multidrop software for sensor configuration and monitoring
- Field calibration software

_

 $^{^{\}mbox{\scriptsize 1}}$ Modbus is a registered trademark of Modbus Organization, Inc.

2.1 Overview Comm Boxes

	MI3COMM metal box	MI3MCOMMN DIN 3TE	MI3MCOMM DIN 4TE	MI3MCOMM DIN 6TE
	105 300E			
Part number	MI3COMM	MI3MCOMMN	MI3MCOMM	MI3MCOMM
Spectral Heads ¹	LT, G5, 1M, 2M	LT, G5, 1M, 2M	LT, G5, 1M, 2M	LT, G5, 1M, 2M
Head Support by firmware by terminal	8 heads 1 head	8 heads 4 heads	8 heads 4 heads	8 heads 4 heads
Control panel Display Buttons	> >	1 1	√ ✓	√ ✓
Outputs mA/V TC Relay	1 1 1	- - 1	- - 1	4x (optionalA) - 1
Inputs Emissivity (analog) Emissivity (digital) Ambient Temp. Compensation Trigger/Hold Function Laser Switching	< < < <	- - - - - -	- - - - - - -	
Interfaces USB RS485 Protocols	Standard Option (4)	Standard -	Standard Standard	Standard -
ASCII Profibus Modbus Profinet Ethernet	Standard Option (P1,P2) Option (M) Option (PN) Option (E)	Standard - - - -	Standard - - - -	Standard Option (P) Option (M) Option (PN) Option (E)

Table 1: Capabilities of Communication Boxes

 $^{^{\}rm 1}$ 1M, 2M spectral heads require box firmware revision 2.11 or higher

3 Technical Data

3.1 Measurement Specification

3.1.1 Sensing Heads

```
Temperature Range
```

02LTS, 10LTS, 10LTH -40 to 600°C (-40 to 1112°F)
20LTS, LTF, 20LTH 0 to 1000°C (32 to 1832°F)
G5 250 to 1650°C (482 to 3002°F)
2M 250 to 1400°C (482 to 2552°F)
1M 500 to 1800°C (932 to 3272°F)

Spectral Response

LTS, LTH, LTF 8 to 14 μm G5 5 μm 2M 1.6 μm 1M 1 μm

Optical Resolution D:S1

LTS 2:1, 10:1, 22:1 typ. (21:1 guaranteed)

LTF 10:1

LTH 10:1, 22:1 typ. (21:1 guaranteed)

G5 10:1 1M, 2M 100:1

> SF1 optics: 2 mm spot @ 200 mm distance (0.08 in @ 7.9 in) SF3 optics: 22 mm spot @ 2200 mm distance (0.87 in @ (8.7 in)

Response Time²

LTS, LTH 130 ms LTF 20 ms G5 130 ms 1M, 2M 10 ms³

Accuracy⁴

LTS, LTH, LTF, G5 ± (1% of reading or 1°C), whichever is greater

 \pm 2°C (\pm 4°F) for target temp. < 20°C (68°F)

1M, 2M \pm (0.5% of reading + 2°C)

To maintain the specified accuracy, it is recommended to calibrate the instrument annually.

Repeatability

LTS, LTH, LTF, G5 \pm 0.5% of reading or \pm 0.5°C, whichever is greater

1M, 2M \pm 0.25% of reading + 1°C

www.GlobalTestSupply.com

¹ at 90% energy in minimum and distance 400 mm (15.7 in.)

² 90% response

³ 30 ms – if more than one sensing head drives an analog output of the communication box

⁴ at ambient temperature 23°C \pm 5°C (73°F \pm 9°F), ϵ = 1.0, and calibration geometry

Temperature Coefficient¹

LTS, LTH, LTF, G5 \pm 0.05 K / K or \pm 0.05% of reading / K, whichever is greater

1M, 2M 0.01% of reading / K

3.1.2 Comm Box

Accuracy

mA/V output $\pm 1^{\circ}$ C

(corresponds to \pm 0.015 mA for the current output at 0-20 mA

or ± 0.015 mA for the current output at 4-20 mA

or \pm 4 mV for the voltage output at 0-5 V or \pm 8 mV for the voltage output at 0-10 V)

TC output ± 1.5 °C

Temperature Resolution

mA/V Output $\pm 0.1^{\circ}$ C ($\pm 0.2^{\circ}$ F)² / 12 bit, for Comm Box (metal)

mA/V Output ± 0.02 °C (± 0.04 °F) / 16 bit, for Comm Box (DIN 6TE, analog)

Temperature Coefficient

mA/V Output \pm 0.02 K / K TC Output \pm 0.05 K / K

Emissivity

All models 0.100 to 1.100

Transmission

All models 0.100 to 1.000

3.1.2.1 Comm Box (metal)

Loop Time

mA/V Output

LTS, LTH, G5 8 ms LTF, 1M, 2M 4 ms

digital 16 ms * number of connected heads

3.1.2.2 Comm Box (DIN)

Loop Time

digital

LTS, LTH, G5 8 ms³ * number of connected heads LTF, 1M, 2M 4 ms⁴ * number of connected heads

¹ ambient temperature deviations related to 23°C

² for a zoomed temperature span of < 500°C (932°F)

³ per bus channel

⁴ per bus channel

3.2 Optical Charts

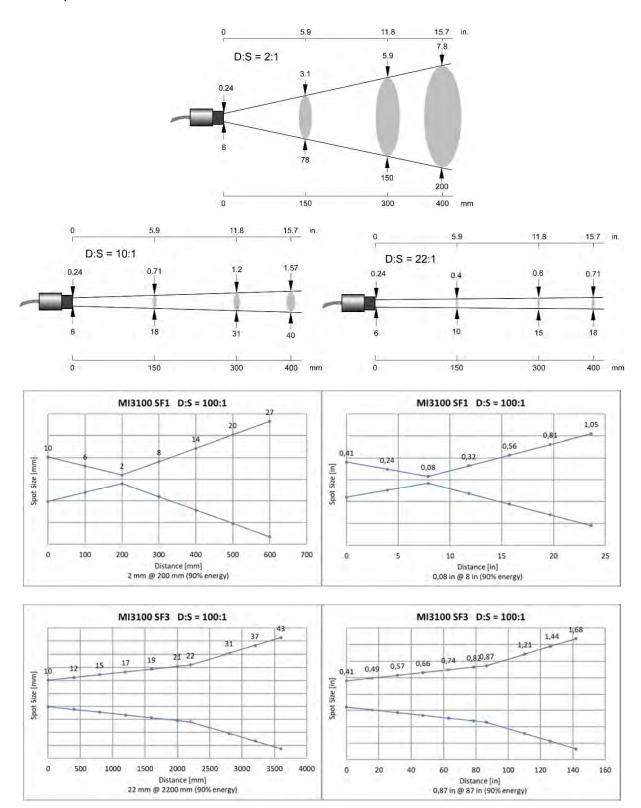


Figure 1: Spot Size Charts

3.3 Electrical Specification

For an overview to the capabilities of the communication boxes, see section 2.1 Overview Comm Boxes, page 13.

3.3.1 Comm Box, all models

Voltage Supply 8 to 32 VDC

Residual Ripple ≤ 100 mV (peak-to-peak)

Power Consumption max. 6 W

Alarm Output

1 potential-free relay output, 48 V / 300 mA

Relay with wear-free contacts (solid state relay) for target temperature or head ambient

temperature, electrically isolated from power supply

USB Interface

Version: 2.0

Connector on the board: type Mini-B

3.3.2 Comm Box (metal)

Analog Outputs

Output 1 0 to 5/10 V output for head ambient temperature and object temperature

electrically not isolated from power supply

Thermocouple J: -40 to 600°C (-40 to 1112°F)

K: -40 to 800°C (-40 to 1472°F) R/S: 250 to 1800°C (482 to 3272°F)

Output 2 0 to 20 mA (active), or

4 to 20 mA (active), or

0 to 5 V, or 0 to 10 V

electrically not isolated from power supply

External Inputs

3 inputs are available useable in different modes:

FTC1-3 Emissivity control: 3 bit digital coded, 0 to Vss

FTC1 Emissivity control: analog, 0 to 5 V_{DC}

FTC2 Ambient temperature compensation analog: 0 to 5 V_{DC}

FTC3 for trigger/hold/laser functions, 0 to Vss

3.3.3 Comm Box (DIN 6TE, analog)

Analog Outputs

Output 1 to 4 0 to 20 mA (active), or

4 to 20 mA (active), or

0 to 5 V, or 0 to 10 V

Each output is galvanically isolated from the other and from power supply!

3.4 Environmental Specification

3.4.1 Sensing Head

Ambient Temperature

LTS, LTF, G5 -10 to 120°C (14 to 248°F) LTH -10 to 180°C (14 to 356°F) 1M, 2M 0 to 120°C (32 to 248°F)

Laser (1M, 2M) automatic switch off at 65°C (149°F)

Storage Temperature

-20 to 180°C (-4 to 356°F) all other models -20 to 120°C (-4 to 248°F)

Rating IP65 (NEMA-4) / IEC 60529

Relative Humidity 10% to 95% non-condensing

Vibration 11 to 200 Hz, 3 g above 25 Hz operating, 3 axes / IEC 60068-2-6

Shock 50 g, 11 ms, operating, 3 axes / IEC 60068-2-27

Weight

LT, G5 50 g (1.8 oz) 1M, 2M 233 g (8.2 oz)

Material

Head Stainless steel

Head Cable

LTH Teflon®

maximal ambient temperature 180°C (356°F)

all other models PUR (Polyurethane), Halogen free, Silicone free

maximal ambient temperature 120°C (248°F)

Teflon develops poisonous gasses when it comes into contact with flames!

3.4.2 Comm Box (metal)

Ambient Temperature -10 to 65°C (14 to 149°F)

Storage Temperature -20 to 85°C (-4 to 185°F)

Rating IP65 (NEMA-4) / IEC 60529

Relative Humidity 10% to 95% non-condensing

Vibration 11 to 200 Hz, 3 g above 25 Hz operating, 3 axes / IEC 60068-2-6

Shock 50 g, 11 ms, operating, 3 axes / IEC 60068-2-27

Weight 370 g (13 oz)

Material die-cast zinc enclosure

3.4.3 Comm Box (DIN)

Ambient Temperature -10 to 65°C (14 to 149°F) Storage Temperature -20 to 85°C (-4 to 185°F)

Relative Humidity 10% to 95% non-condensing

Vibration 11 to 200 Hz, 3 g above 25 Hz operating, 3 axes / IEC 60068-2-6

Shock 50 g, 11 ms, operating, 3 axes / IEC 60068-2-27

Weight 125 g (4.4 oz)

Material molded plastic

3.4.4 LTH Electronics

Ambient Temperature -10 to 65°C (14 to 149°F)

Storage Temperature -20 to 85°C (-4 to 185°F)

Rating IP65 (NEMA-4) / IEC 60529

3.5 Dimensions

3.5.1 Sensing Head LT, G5

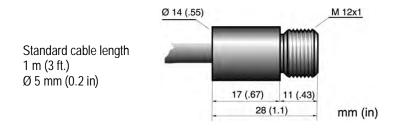


Figure 2: Dimensions of LT, G5 Sensing Heads

3.5.2 Sensing Head LTH

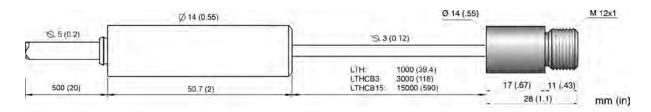


Figure 3: Dimensions of LTH Sensing Head with separated Electronics

3.5.3 Sensing Head 1M, 2M

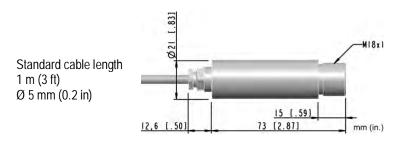


Figure 4: Dimensions of 1M, 2M Sensing Heads

3.5.4 Comm Box (metal)

The box is equipped with three cable feed-through ports – two with IP65 compatible sealing glands, a third sealing gland comes for boxes with fieldbus communications (RS485, Profibus etc.). Boxes without fieldbus have a plugged expansion feed-through port instead (M12x1.5 thread).

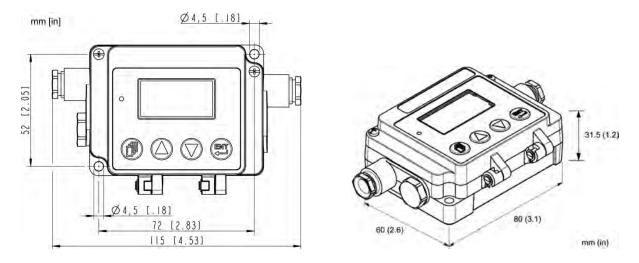
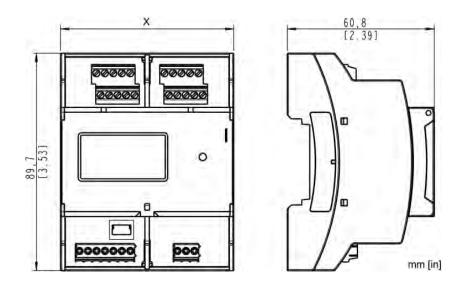



Figure 5: Dimensions of Communication Box

3.5.5 Comm Box (DIN)

The boxes come in a standard DIN rail size in accordance to EN 50022-35x7.5 (DIN 43880).

Width	MI3MCOMMN	MI3MCOMM	MI3MCOMM
Χ			DIN 6TE:
	53.6 mm (2.1 in)	71.6 mm (2.8 in)	107.6 mm (4.2 in)

Figure 6: Dimensions for Comm Boxes (DIN)

3.6 Scope of Delivery

3.6.1 Sensing Head

- Sensing head with 1 m (3 ft.) cable
- Laser (1M, 2M heads only)
- 2x mounting nuts

3.6.2 Comm Box

- Communication box
- XXXMI3MCOMMSET: ferrite cores (4 pcs), shield tapes (4 pcs) for Comm Box (DIN) only
- Software DVD
- Quickstart guide

4 Basics

4.1 Measurement of Infrared Temperature

All surfaces emit infrared radiation. The intensity of this infrared radiation changes according to the temperature of the object. Depending on the material and surface properties, the emitted radiation lies in a wavelength spectrum of approximately 1 to 20 µm. The intensity of the infrared radiation (heat radiation) is dependent on the material. For many substances, this material-dependent constant is known. This constant is referred to as the "emissivity value".

Infrared thermometers are optical-electronic sensors. These sensors are sensitive to the emitted radiation. Infrared thermometers are made up of a lens, a spectral filter, a sensor, and an electronic signal processing unit. The task of the spectral filter is to select the wavelength spectrum of interest. The sensor converts the infrared radiation into an electrical signal. The signal processing electronics analyze the electrical signal and convert it into a temperature measurement. As the intensity of the emitted infrared radiation is dependent on the material, the required emissivity can be selected on the sensor. The biggest advantage of the infrared thermometer is its ability to measure temperature without touching an object. Consequently, surface temperatures of moving or hard to reach objects can easily be measured.

4.2 Emissivity of Target Object

To determine the emissivity of the target object see section 19.1 Determination of Emissivity, page 129. If emissivity is low, measured results could be falsified by interfering infrared radiation from background objects (such as heating systems, flames, fireclay bricks, etc. located close beside or behind the target object). This type of problem can occur when measuring reflective surfaces and very thin materials, such as plastic film and glass.

This measurement error can be reduced to a minimum, if particular care is taken during installation and the sensing head is shielded from these reflecting radiation sources.

4.3 Ambient Temperature

In many cases there is a poor understanding of the actual temperatures at the site where the sensor is mounted. While process temperatures are typically very well monitored and controlled, there is ambient conditions around the process have no bearing on product throughput or quality and therefore remain unknown. In all cases it is recommended to perform considerable testing. The external temperature can be measured at the surface of the instrument. For automated monitoring, the sensor also provides its internal temperatures via the PC software or via the digital interface. Alternatively, the sensor-internal alarm relay (if present) can be switched if the maximum permissible internal temperature is threatened to be exceeded.

The sensing head is suited for the ambient temperatures up to 120°C (248°F) for the standard heads and up to 180°C (356°F) for the LTH heads. The sensing head can operate in ambient temperatures up to 200°C (392°F) with the air-cooling accessory.

4.4 Atmospheric Quality

If the lens gets dirty, infrared energy will be blocked and the instrument will not measure accurately. It is good practice to always keep the lens clean. The Air Purge Jacket helps keep contaminants from building up on the lens. If you use air purging, make sure a filtered air supply with clean dry air at the correct air pressure is installed before proceeding with the sensor installation.

4.5 Electrical Interference

To minimize electrical or electromagnetic interference or "noise", please be aware of the following:

- Mount the unit as far away as possible from potential sources of electrical interference, such as motorized equipment, which can produce large step load changes.
- Use shielded wire for all input and output connections.
- To avoid current equalizations, make sure that a sufficient potential equalization is realized between the sensing head and metal housing of the communication box.
- To avoid ground loops, make sure that only one point is earth grounded, either via the sensing head, the Comm Box, or power.

Please note that:

- The metal housings of the sensing head and the MI3 communication box are electrically connected to the shield of the head cable.
- All inputs and outputs (except the alarm output and the outputs of the Comm Box (DIN 6TE, analog)) use the same ground and are electrically connected to the power supply.

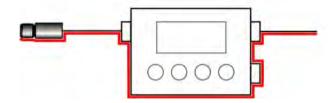


Figure 7: Shield Run for Comm Box (metal)

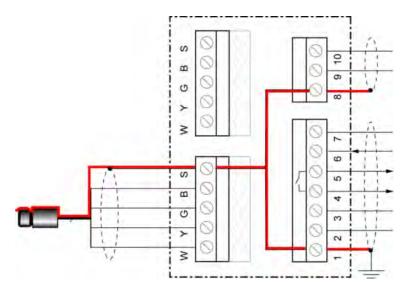


Figure 8: Shield Run for Comm Box (DIN)

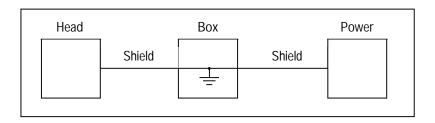


Figure 9: Only one point is earth grounded either via sensing head, via Comm Box, or via Power

5 Installation

5.1 Positioning

Sensor location depends on the application. Before deciding on a location, you need to be aware of the ambient temperature of the location, the atmospheric quality of the location, and the possible electromagnetic interference in that location. If you plan to use air purging, you need to have an air connection available. Wiring and conduit runs must be considered, including computer wiring and connections, if used.

5.1.1 Distance to Object

The desired spot size on the target will determine the maximum measurement distance. To avoid erroneous readings, the target spot size must completely fill the entire field of view of the sensor. Consequently, the sensor must be positioned so the field of view is the same as or smaller than the desired target size. For a list indicating the available optics, see section 3.2 Optical Charts, page 16.

The actual spot size for any distance can be calculated by using the following formula. Divide the distance D by your model's D:S number. For example, for a unit with D:S = 10:1, if the sensor is 400 mm (15.7 in.) from the target, divide 400 by 10 (15.7 by 10), which gives you a target spot size of approximately 40 mm (1.57 in.).

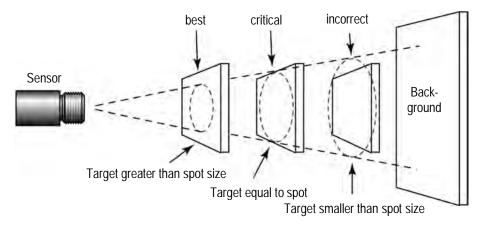


Figure 10: Proper Sensor Placement

5.2 Installation Schemes

5.2.1 Comm Box (metal)

The basic stand-alone configuration consists of one sensing head interfaced to one metallic communications box. The sensing head provides all IR measurement functionality. The communications box provides an externally accessibly user interface and display, advanced signal processing capability, field wiring terminations and fieldbus functionality with optional RS485 communication interface.

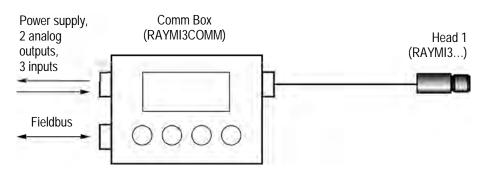


Figure 11: Single Head Configuration with Comm Box

To increase the number of supported sensing heads, you can use a dedicated accessory, see section 10.1.1 Multi-Channel Box, page 64.

5.2.2 Comm Box (DIN)

The multiple sensing head configuration consists of a modular communication box provided in a DIN rail mountable plastic enclosure for supporting 4 sensing heads simultaneously. The DIN rail communication box provides an externally accessibly user interface. The terminal strip connectors are used to simplify the field wiring.

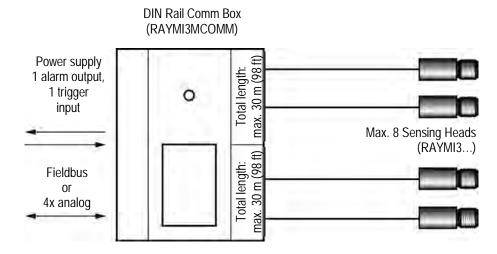


Figure 12: Multiple Head Configuration with DIN Rail Comm Box

5.3 Wiring, Head Cable

The user has to install the sensor cable on the communication box. It may be shortened, if necessary, but keep a minimal length of 20 cm (7.9 in).

Do not bend the sensing head cable tighter than a radius of 40 mm (1.6 in) for the standard heads (PUR cable) and 25 mm (0.98 in) for the high ambient temperature heads (Teflon cable) respectively!

To prevent possible fluctuating temperature readings or damages to the device make sure that the sensor head is grounded before use!

The total sensing head cable length for all networked sensing heads must not exceed 30 m (98 ft) for MI3 and 2x30 m (2x98 ft) for MI3M!

Do not add a third party cable to extend the length of the sensing head cable!

5.3.1 Comm Box (metal)

- 1. Cut about 40 mm (1.5 in) of the cable sheath from the end of the sensing head cable ⑦. Caution: Do not cut into the shield!
- 2. Cut the shield ⑤ so about 5 mm (0.2 in) remains exposed from under the cable sheath. Separate the shield and spread the strands out.
- 3. Strip 3 mm (0.12 in) of insulation from the wires 6!
- 4. Open the communication box by removing the four Phillips head screws and pulling off the lid. Unscrew the pressure screw ①, and remove the first metal washer ④, the rubber washer ③, and the second and the third metal washers ④.
- 5. Put the following on the cable: the pressure screw ①, the first metal washer ④, the rubber washer ③ and the second metal washers ④, see the following figure.
- 6. Spread the cable shield ⑤ and then slip the third metal washer ④ onto the cable. Note that the shield must make good contact to both metal washers.
- 7. Slip the wires (a) into the communication box far enough to connect to the terminal.
- 8. Screw the pressure screw ① into the communication box. Tighten snuggly. Do not over tighten.
- 9. Connect the wires **6** to the terminal on the printed circuit board.

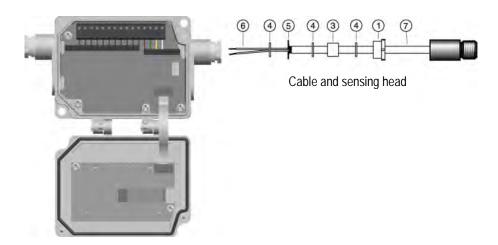


Figure 13: Sensing Head Cable to the Comm Box

5.3.2 Comm Box (DIN)

The wiring of the sensing head cable is color coded, see section 5.4.3 Comm Box (DIN 4 TE), page 30.

5.4 Wiring, Terminal

You need to connect the power supply and possibly the signal input/output wires. Use only cable with outside diameter from 4 to 6 mm (0.16 to 0.24 in), wire size: 0.14 to 0.75 mm² (AWG 19 to 26).

The cable must include shielded wires. It should not be used as a strain relief!

5.4.1 Comm Box (metal)

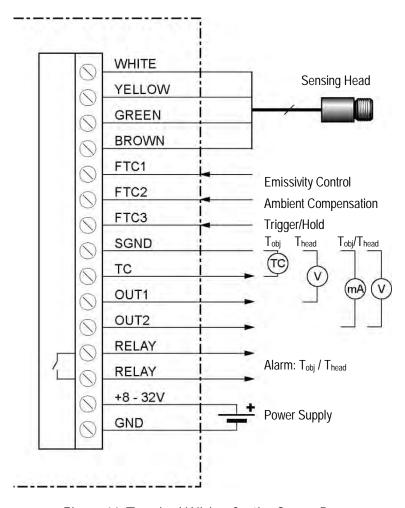


Figure 14: Terminal Wiring for the Comm Box

5.4.2 Comm Box (DIN 3TE)

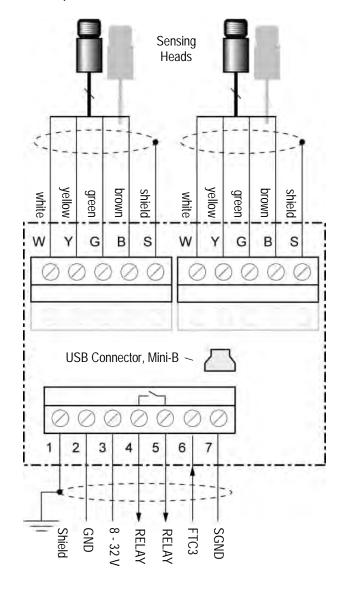


Figure 15: Terminal Wiring for the Comm Box DIN 3TE

5.4.3 Comm Box (DIN 4 TE)

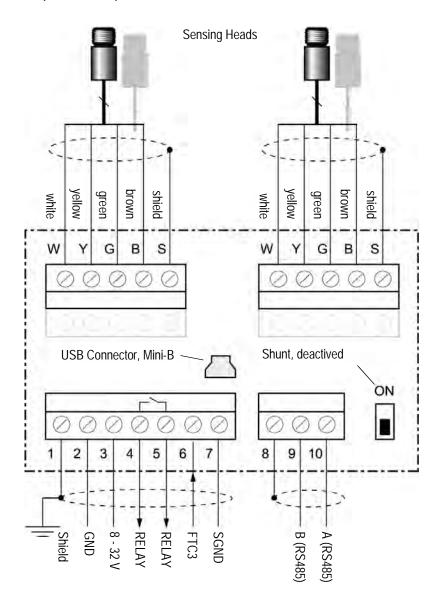


Figure 16: Terminal Wiring for the Comm Box DIN 4 TE

5.4.4 Comm Box (DIN 6 TE)

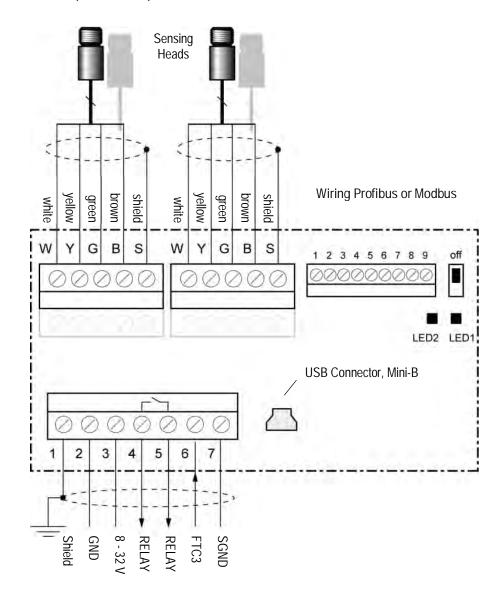


Figure 17: Terminal Wiring for the Comm Box DIN 6 TE for Profibus and Modbus

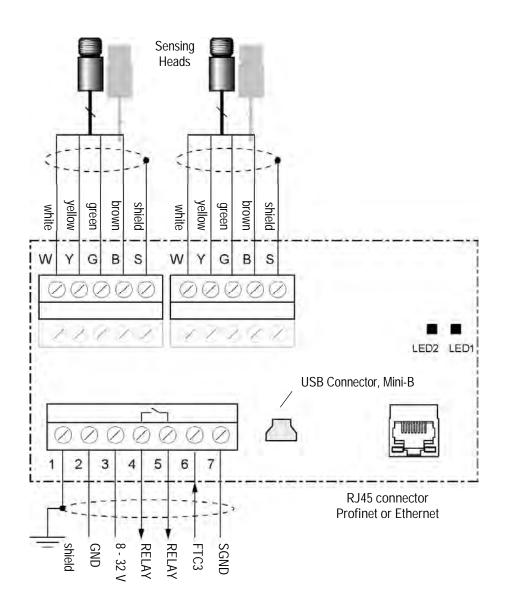


Figure 18: Terminal Wiring for the Comm Box DIN 6 TE for Profinet and Modbus

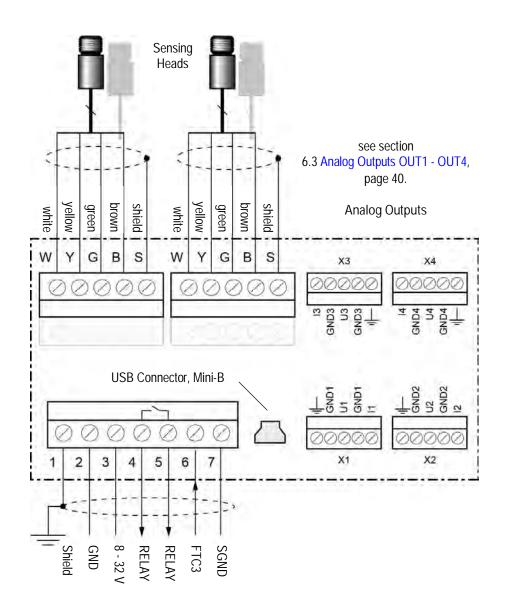


Figure 19: Terminal Wiring for the Comm Box DIN 6 TE, analog

5.4.5 EMI Resistance for Comm Box (DIN)

To maintain EMI compliance to CE standards the attached Ferrite cores need to be placed on all wires! Make sure that the cable shields will be connected to the terminal pin <Shield>!

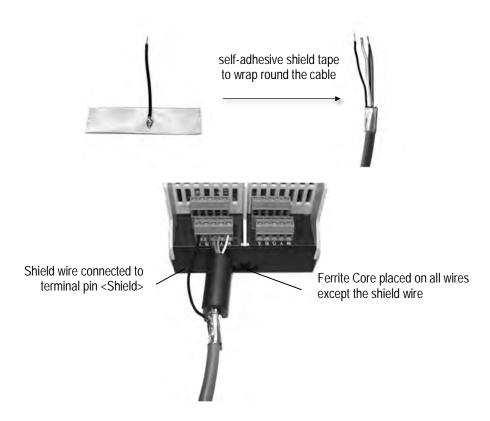


Figure 20: Mounting of Shield Wire and Ferrite Core

5.5 Power On Procedure

To power the system, the following procedures are required.

5.5.1 One Head System

- 1. Disconnect power to the box.
- 2. Connect the wires for the head to the box terminal.
- 3. Power the box.
- 4. The box now assigns address 1 to the head.

5.5.2 Multiple Heads – Random Address Assignment

- 1. Disconnect power to the box.
- 2. Connect the wires for all heads to the box terminal.
- 3. Power the box.
- 4. The box automatically assigns a unique address to each of the heads the mapping of physical head and head address is randomly.

5.5.3 Multiple Heads – User Controlled Address Assignment

- 1. Disconnect power to the box.
- 2. Connect the wires for the first head to the box terminal.
- 3. Power the box.
- 4. The box now assigns address 1 to the first head.
- 5. Follow the instructions 1 to 4 to add the next head. With each new head detected, the box increases the head address by 1.

The head address may be changed later by the user under the dedicated head page. See section 8.2 < Head > Page, page 49.

5.6 USB

The USB interface comes with each box (USB connector, Mini-B). Connect a single unit to a USB computer port by using an appropriate USB cable.

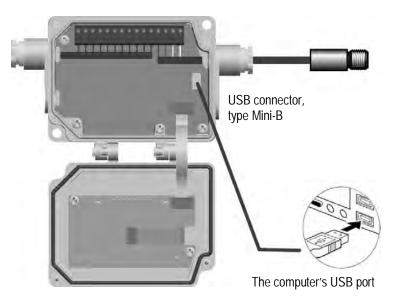
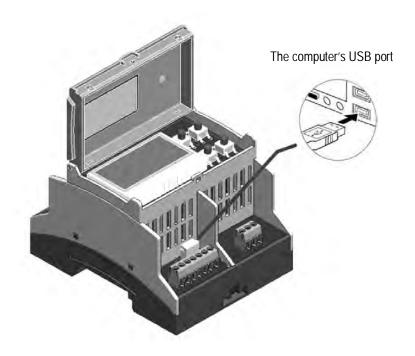
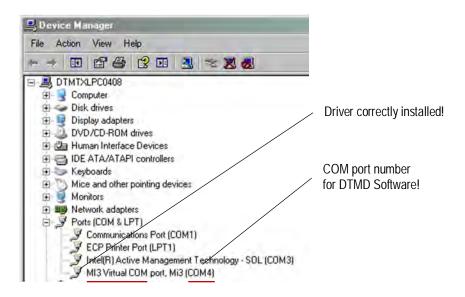


Figure 21: USB Connection via the Comm Box (metal)




Figure 22: USB Connection via the Comm Box (DIN Rail)

Consider the following sequence for the installation:

- 1. Disconnect/reconnect the USB interface cable to the computer!
- 2. Ignore the Windows Wizard <Found New Hardware>!
- 3. Navigate manually to the dedicated USB driver <RaytekMlcomport.inf> on the support media and execute it.

It is strongly recommended to check the correct driver installation under the Windows Operating System <Start> <Settings> <Control Panel> <System> <Hardware> <Device Manager> <Ports (COM & LPT)>. Go there also to get the virtual COM port number for communicating with the DTMD Software.

5.7 Fieldbus

A simultaneous communication via USB and fieldbus is not allowed!

5.7.1 Addressing

Each slave in the network must have a unique address and must run at the same baud rate!

For setting the fieldbus configurations through the control panel, see section 8.3 <Box Setup> Page, page 50.

5.7.2 RS485 based Installations

The recommended way to add more devices into a network is connecting each device in series to the next in a linear topology (daisy chain).

Use only one power supply for all boxes in the network to avoid ground loops!

It is strongly recommended to use shielded and pair twisted cables (e.g. CAT.5)!

Make sure the network line is terminated!

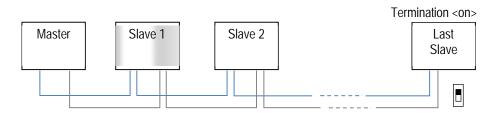


Figure 23: Network in Linear Topology (daisy chain)

6 Outputs

For the outputs the following groupings (setups) are possible:

Output	Setup 1	Setup 2	Setup 3	Setup 4	Setup 5
OUT1	head temperature V	head temperature V	object temperature V	object temperature V	_
OUT2	object temperature mA	object temperature V	object temperature mA	object temperature V	head temperature V
TC	-	-	_	_	object temperature

6.1 Analog Output OUT1

Comm Box: metal

(A)

Source: object temperature / head ambient temperature

Signal: 0 to 5/10 V

Terminal: OUT1, SGND

This output can be configured for the object or the head ambient temperature. E.g. the output range for the head ambient temperature is 0 to 5 VDC corresponding to 0 to 500°C (32 to 932°F). The minimum load impedance for the voltage output must be 10 k Ω .

The output is short circuit resistant.

The outputs <OUT1> and <TC> are not available at the same time!

6.2 Analog Output OUT2

Comm Box: metal

Source: object temperature / head ambient temperature

Signal: 0/4 to 20 mA or 0 to 5/10 V

Terminal: OUT2, SGND

The signal output can be configured as either current or voltage output. The minimum load impedance for the voltage output must be 10 k Ω . The maximum current loop impedance for the mA output is 500 Ω .

The output is short circuit resistant.

6.3 Analog Outputs OUT1 - OUT4

Comm Box: DIN 6TE, analog (4 channels)

Source: object temperature / head ambient temperature

Signal: 0/4 to 20 mA or 0 to 5/10 V

Terminal: I₁₋₄, U₁₋₄, GND₁₋₄

Each signal output can be configured as either current or voltage output, whereby each sensing head can be assigned to each output. The minimum load impedance for the voltage output must be 10 k Ω . The maximum current loop impedance for the mA output is 500 Ω . All outputs are short circuit resistant.

Each output is galvanically isolated from the other and from the power supply!

Powering the communication box (DIN, 6TE), analog, only via USB will disable all analog outputs! The configuration of the box under the control panel is furthermore possible. Under the DataTemp Multidrop you can only drive and configure the analog outputs by using an additional external power supply!

6.4 Alarm Output RELAY

Comm Box: all models

Source: object temperature / head ambient temperature

Signal: potential-free contacts

Terminal: RELAY, RELAY

The alarm output is controlled by the target object temperature or the head ambient temperature. In case of an alarm, the output switches the potential free contacts from a solid state relay. The maximum load for this output is 48 V / 300 mA.

If a spike voltage exceeding the absolute maximum rated value is generated between the output terminals, insert a clamping diode in parallel to the inductive load as shown in the following circuit diagram to limit the spike voltage.

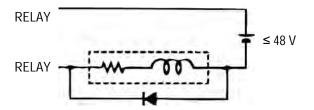


Figure 24: Spike Voltage Limitation for the Alarm Relay

6.5 Thermocouple Output TC

Comm Box: metal

Source: object temperature

Signal: TCJ, TCK, TCR, or TCS

Terminal: TC, SGND

This output can be configured as thermocouple output type J, K, R, or S. For that output, you must install a dedicated compensation cable. The output impedance is 20 Ω . The output is short circuit resistant.

The outputs <OUT1> and <TC> are not available at the same time!

7 Inputs

Three external inputs FTC1, FTC2, and FTC3 are used for the external control of the unit.

You cannot enable the input functions through the control panel!

	FTC1	FTC2	FTC3
Emissivity (analog control)	Х		
Emissivity (digital control)	Х	Х	Х
Ambient Background Temperature Compensation		Х	
Trigger/Hold Function			Х
Laser Switching			Х

Table 2: Overview for FTC Inputs

7.1 Emissivity (analog)

Function: emissivity (analog control)

Signal: 0 to 5 V_{DC}

Terminal: FTC1, SGND

The FTC1 input can be configured to accept an analog voltage signal (0 to 5 VDC) to provide real time emissivity setting. Each input can support one head. The following table shows the relationship between input voltage and emissivity:

U in V	0.0	0.5	 4.5	5.0
Emissivity	0.1	0.2	 1.0	1.1

Table 3: Ratio between Analog Input Voltage and Emissivity

Example:

This process requires setting the emissivity:

for product 1: 0.90for product 2: 0.40

Following the example below, the operator needs only to switch to position "product 1" or "product 2".

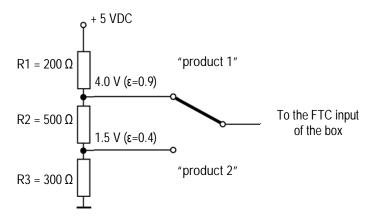


Figure 25: Adjustment of Emissivity at FTC Input (Example)

7.2 Emissivity (digital)

Function: emissivity (digital control)
Signal: digital low/high
Terminal: FTC1-3, SGND

The box electronics contains a table with 8 pre-installed settings for emissivity. To activate these emissivity settings, you need to have the inputs FTC1, FTC2, and FTC3 connected. According to the voltage level on the FTC inputs, one of the table entries will be activated.

0 = Low signal (0 V)

1 = High signal (from 5 V to VDC)

A non-wired input is considered as not defined!

Table entry	Emissivity (Examples)	FTC3	FTC2	FTC1
0	1.100	0	0	0
1	0.500	0	0	1
2	0.600	0	1	0
3	0.700	0	1	1
4	0.800	1	0	0
5	0.970	1	0	1
6	1.000	1	1	0
7	0.950	1	1	1

Figure 26: Digital Selection of Emissivity with FTC Inputs

The values in the table cannot be changed through the control panel.

7.3 Background Temperature Compensation

Function: Background Temperature Compensation

Signal: 0 to 5 Vpc

Terminal: FTC2, SGND

Inputs

The sensor is capable of improving the accuracy of target temperature measurements by taking into account the ambient or background temperature. This feature is useful when the target emissivity is below 1.0 and the background temperature is significantly hotter than the target temperature. For instance, the higher temperature of a furnace wall could lead to hotter temperatures being measured especially for low emissivity targets.

Ambient background temperature compensation allows for the impact of reflected radiation in accordance with the reflective behavior of the target. Due to the surface structure of the target, some amount of ambient radiation will be reflected and therefore, added to the thermal radiation that is collected by the sensor. The ambient background temperature compensation adjusts the final result by subtracting the amount of ambient radiation measured from the sum of thermal radiation the sensor is exposed to.

The ambient background temperature compensation should always be activated in case of low emissivity targets measured in hot environments or when heat sources are near the target!

Three possibilities for ambient background temperature compensation are available:

- The internal sensing head temperature is utilized for compensation assuming that the ambient background temperature is more or less represented by the internal sensing head temperature. This is the default setting.
- If the background ambient temperature is known and constant, the user may give the known ambient temperature as a constant temperature value.
- Ambient background temperature compensation from a second temperature sensor (infrared or contact temperature sensor) ensures extremely accurate results. For example, a second IR sensor, configured to provide a 0 to 5 volt output scaled for the same temperature range as the target can be connected to input FTC2 to provide real-time ambient background compensation.

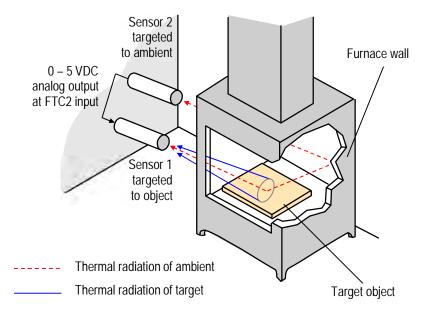


Figure 27: Principle of Ambient Background Temperature Compensation

7.4 Trigger/Hold

The FTC3 input can be used as an external trigger functioning as "Trigger" or "Hold". All sensing heads are affected by the FTC3 input at the same time.

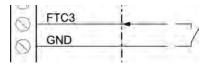


Figure 28: Wiring of FTC3 as Trigger/Hold

Trigger: A logical low signal at the input FTC3 will reset the peak or valley hold function. As long as the input is kept at logical low level, the software will transfer the actual object temperatures toward the output. At the next logical high level, the hold function will be restarted.

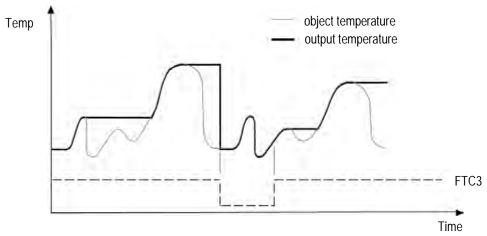


Figure 29: FTC for Resetting the Peak Hold Function

Hold: This mode acts as an externally generated hold function. A transition at the input FTC3 from logical high level toward logical low level will transfer the current temperature toward the output. This temperature will be written to the output until a new transition from high to low occurs at the input FTC3.

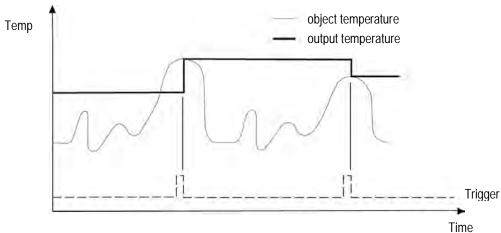
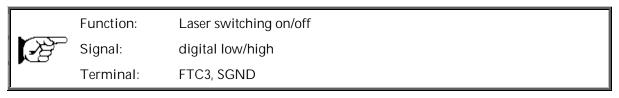



Figure 30: FTC3 for Holding the Output Temperature

7.5 Laser Switching

The FTC3 input can also be used as an external trigger to switch the laser (only available for selected sensing head models). A transition at the input from logical high level toward logical low level will switch the laser. All sensing heads are effected by the FTC3 input at the same time.

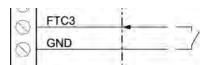


Figure 31: Wiring of FTC3 as Laser Switching

8 Operation

Once you have the sensor positioned and connected properly, the system is ready for continuous operation.

The control panel is accessible on the outside of the box. Push buttons provide positive tactile feedback to the user. User interface includes a backlit LCD, displaying sensor set up parameters and temperature outputs. Alternatively, the operation of the sensor can be done by means of the software that came with your sensor.

8.1 Control Panel

The sensor system is equipped with a control panel integrated in the box lid, which has setting/controlling buttons and an LCD display.

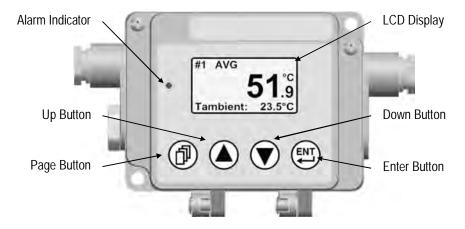


Figure 32: Control Panel for the Comm Box (metal)

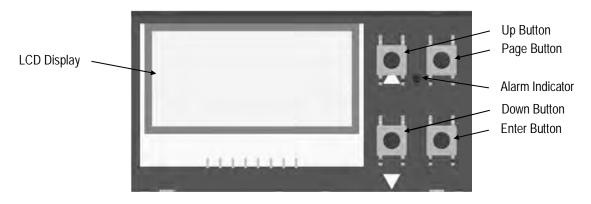


Figure 33: Control Panel for the Comm Box (DIN)

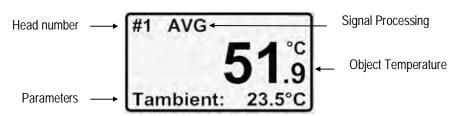


Figure 34: Elements of the LCD Display

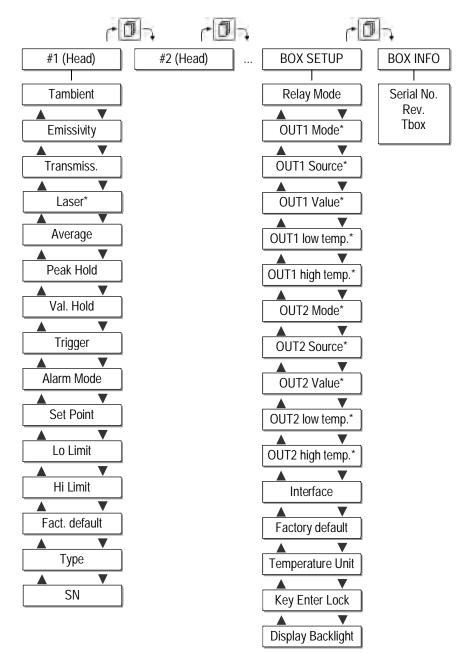
Operation

The head number is shown only if two or more sensing heads are connected to the communication box.

Symbol/Message	Meaning	Remark
AVG	Average	
PH	Peak Hold	
VH	Valley Hold	
HOLD	Trigger set to HOLD function	
APH	Advanced Peak Hold	Software controlled
APHA	Advanced Peak Hold with Averaging	Software controlled
AVH	Advanced Valley Hold	Software controlled
AVHA	Advanced Valley Hold with Averaging	Software controlled
<power fault=""> & alarm indicator are blinking</power>	Power via USB not sufficient to drive all analog outputs of Communication box (DIN, 6TE), analog	Configuration of the box is possible but outputs are set to disabled

Table 4: Symbols and Messages in the Display

Pushing the keys of the control panel will cause the following actions:



enters the menu or save parameters

enters the next page

No action for 10 s forces the unit to leave the menu without saving of parameters.

^{*} not available for all models

4 output channels for Comm Box DIN 6 TE, analog

8.2 < Head > Page

<Tambient> current head ambient temperature

<Emissivity> changes the emissivity value for the selected head. The emissivity is a

calculated ratio of infrared energy emitted by an object to the energy emitted by a blackbody at the same temperature (a perfect radiator has an emissivity of 1.00). For information on determining an unknown emissivity and for sample

emissivities, see section 19.2 Typical Emissivity Values, page 129.

<Transmiss.> changes the transmission value when using protective windows. For example,

if a protective window is used with the sensor, set the transmission to the

appropriate value.

Operation

<Laser> handles the laser in the following modes:

<off> switches the laser off

<flash> forces the laser to blink at 8 Hz <on> switches the laser permanently on

<external> switches the laser via external input FTC3

An activated laser will be switched off automatically after 10 minutes. The laser is available for 1M and 2M heads only. The laser can be activated at

the same time for maximal 4 heads.

<Average> AVG signal post processing set to averaging, parameter given in seconds. Once

<Average> is set above 0 s, it automatically activates. Note that other hold functions (like Peak Hold or Valley Hold) cannot be used concurrently. Value

range: 0.0 to 998.9 sec, ∞

See section 8.5.1 Averaging, page 52.

<Peak Hold> PH signal post processing set to Peak Hold, parameter given in seconds. Once

<Peak Hold> is set above 0 s, it automatically activates. Note that other hold functions (like Valley Hold or Averaging) cannot be used concurrently. Value

range: 0.0 to 998.9 sec, ∞

See section 8.5.2 Peak Hold, page 53.

<Val. Hold> VH signal post processing set to Valley Hold, parameter given in seconds. Once

<Valley Hold> is set above 0 s, it automatically activates. Note that other hold functions (like Peak Hold or Averaging) cannot be used concurrently. Value

range: 0.0 to 998.9 sec, ∞

See section 8.5.3 Valley Hold, page 53.

<Trigger> defines the trigger mode for the selected head:

<trig>: ... to reset the peak or valley hold function

<hold>: activates the hold function See section 7.4 Trigger/Hold, page 45.

<Alarm Mode> defines the alarm mode for the selected head:

<Tobj>: object temperature as alarm source

<Tamb>: head ambient temperature as alarm source

<Set Point> defines a temperature threshold for an alarm

<Lo Limit> low end of temperature measurement range (read only)
<Hi Limit> high end of temperature measurement range (read only)

<Fact. default> sets the selected head back to factory default.

The factory default values are to be found in section 18.8 Command Set,

page 122.

<Type> provides the head model, e.g. MI3LT

<SN> provides the serial number for the selected head and allows to reassign a new

head address

8.3 <Box Setup> Page

<Relay Mode> defines the switching behavior for the box internal alarm relay:

<normally open>: open contact in non-alarm status
<normally closed>: closed contact in non-alarm status
<permanently OFF>: permanently open contacts
<permanently ON>: permanently closed contacts

<OUT1 Mode> defines the mode for the analog output:

<TCJ>, <TCK>, <TCR>, <TCS>

< 0.5 V ><0-10V>

<disable> output goes to high-resistance

<OUT1 Source> assigns the selected head to the analog output:

<#1>, <#2>, ..., <Headmax>

<OUT1 Value> defines the basis for the output value:

<Tobject>: object temperature to be output

<Tambient>: head ambient temperature to be output

<OUT1 low temp.> defines the temperature for the low end of the analog output range (scaling) <OUT1 high temp.> defines the temperature for the high end of the analog output range (scaling)

<OUT2 Mode> defines the mode for the analog output 2:

> <0-20mA><4-20mA><0-5V> <0-10V>

<disable> output goes to high-resistance

<OUT2 Source> assigns the selected head to the analog output:

<#1>, <#2>, ..., <Head_{max}>

<OUT2 Value> defines the basis for the output value:

<Tobject>: object temperature to be output

<Tambient>: head ambient temperature to be output

defines the temperature for the low end of the analog output range (scaling) <OUT2 low temp.>

<OUT2 high temp.> defines the temperature for the high end of the analog output range (scaling)

<Interface> RS485/Profibus/Modbus:

<address>: unique address of the box in the network.

<busy <p><baudrate>: baud rate for the box. Each device in the network must be set to the same baud rate. The baud rate for Profibus is automatically negotiated between

master and slave. Profinet/Ethernet:

<DHCP>: on/off – network protocol to configure a device in a network. DHCP

is switched off for Profinet communications.

<IP address>: a unique address of the box in the network, only changeable at

DHCP = off

<SubNetMask>: the subnet mask defines the interpretation of the IP address,

only changeable at DHCP = off

<Gateway>: a gateway connects two subnets at different subnet addresses, only

changeable at DHCP = off

<Port>: communication port, only changeable at DHCP = off, read-onlyfor

Profinet communications

<MAC>: MAC address, read-only

sets the box back to factory default. <Factory default>

The factory default values are to be found in section 18.8 Command Set,

page 122.

Operation

<Temperature Unit> the temperature unit can be set to °C or °F. Note that this setting influences the

digital interfaces like RS485 for both object and head ambient temperature.

<Key Enter Lock> the box has a user interface lockout feature that keeps the box from being

accidentally changed from the control panel (locked by default under DataTemp Multidrop Software and Profinet communications). This lockout

mode denies access to the button to avoid the saving of adjustable

parameters. The unit can be unlocked by pressing the button and the button simultaneously for 3 seconds or alternatively by pressing the button

for 5 seconds.

<Display Backlight> defines the switching behavior for the display:

<ON>: switches the backlight on <OFF>: switches the backlight off

<60sec.OFF>: switches the backlight off after the giving time

To preserve the display's longevity, the backlight should be turned off in case of

not using it!

8.4 <Box Info> Page

<Serial No.>: serial number of the box.

<Rev>: firmware revision

Tbox: current box ambient temperature

8.5 Post Processing

8.5.1 Averaging

Averaging is used to smooth the output signal. The signal is smoothed depending on the defined time basis. The output signal tracks the detector signal with significant time delay but noise and short peaks are damped. Use a longer average time for more accurate damping behavior. The average time is the amount of time the output signal needs to reach 90% magnitude of an object temperature jump.

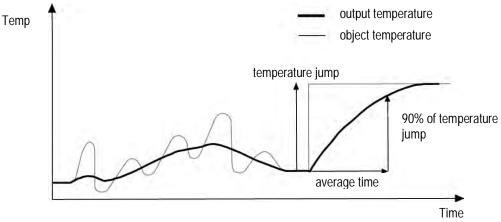


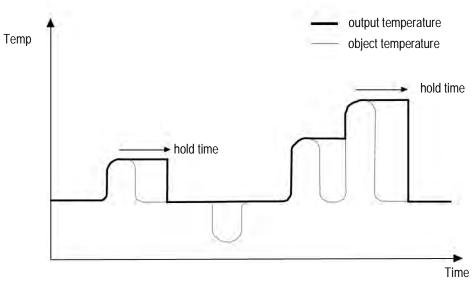
Figure 35: Averaging

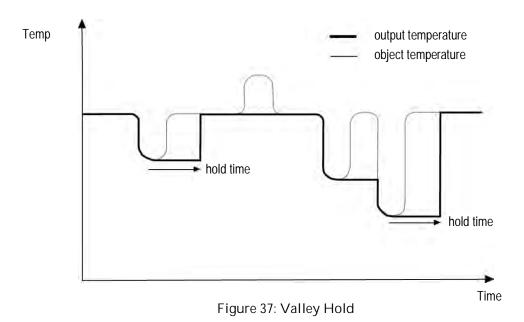
A low level input (GND) at external input FTC3 will promptly interrupt the averaging and will start the calculation again.

Attention: The disadvantage of averaging is the time delay of the output signal. If the temperature jumps at the input (hot object), the output signal reaches only 90% magnitude of the actual object temperature after the defined average time.

8.5.2 Peak Hold

The output signal follows the object temperature until a maximum is reached. The output will "hold" the maximum value for the selected duration of the hold time. Once the hold time is exceeded, the peak hold function will reset and the output will resume tracking the object temperature until a new peak is reached. The range for the hold time is 0.1 to 998.9 s.




Figure 36: Peak Hold

A defined hold time of 999 s (symbol " ∞ " in the display) will put the device into continuous peak detection mode.

A low level input (GND) at external input FTC3 will promptly interrupt the hold time and will start the maximum detection again.

8.5.3 Valley Hold

The output signal follows the object temperature until a minimum is reached. The output will "hold" the minimum value for the selected duration of the hold time. Once the hold time is exceeded, the valley hold function will reset and the output will resume tracking the object temperature until a new valley is reached. The range for the hold time is 0.1 to 998.9 s

A defined hold time of 999 s (symbol " ∞ " in the display) will put the device into continuous valley detection mode.

A low level input (GND) at external input FTC3 will promptly interrupt the hold time and will start the minimum detection again.

8.5.4 Advanced Peak Hold

This function searches the sensor signal for a local maximum (peak) and writes this value to the output until a new local maximum is found. Before the algorithm restarts its search for a local maximum, the object temperature has to drop below a predefined threshold. If the object temperature rises above the held value, which has been written to the output so far, the output signal follows the object temperature again. If the algorithm detects a local maximum while the object temperature is currently below the predefined threshold, the output signal jumps to the new maximum temperature of this local maximum. Once the actual temperature has passed a maximum above a certain magnitude, a new local maximum is found. This magnitude is called hysteresis.

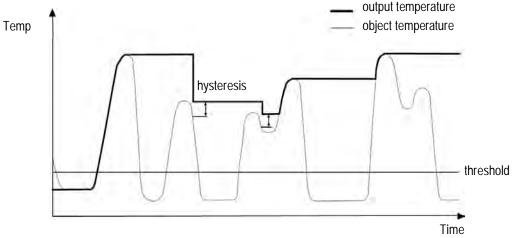


Figure 38: Advanced Peak Hold

The advanced peak hold function is only adjustable by means of the DataTemp Multidrop Software.

8.5.5 Advanced Valley Hold

This function works similar to the advanced peak hold function, except that it will search the signal for a local minimum.

8.5.6 Advanced Peak Hold with Averaging

The output signal delivered by the advanced peak hold functions tends to jump up and down. This is due to the fact, that only maximum points of the otherwise homogenous trace will be shown. The user may combine the functionality of the peak hold function with the averaging function by choosing an average time, thus, smoothing the output signal for convenient tracing.

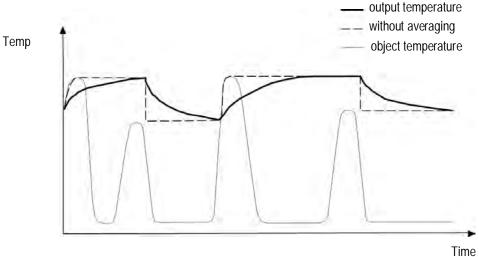


Figure 39: Advanced Peak Hold with Averaging

The advanced peak hold function with averaging is only adjustable by means of the DataTemp Multidrop Software.

8.5.7 Advanced Valley Hold with Averaging

This function works similar to the advanced peak hold function with averaging, except it will search the signal for a local minimum.

9 Options

Options are items that are factory installed and must be specified at time of order. The following are available:

• Longer head cables in the lengths:

3 m / 9.8 ft. (...CB3) 8 m / 26 ft. (...CB8) 15 m / 49 ft. (...CB15) 30 m / 98 ft. (...CB30) – for LT, G5 heads only

Network communication interfaces:
RS485, Profibus DP, Modbus RTU, Profinet IO, Ethernet

9.1 Water Cooled Housing (1M, 2M Heads)

The Water Cooled Housing option (...WS) allows the sensor to be used in ambient temperatures up to 180°C (356°F). The cooling water should be connected using 1/8" NPT stainless steel fittings. The flow rate should be approximately 1.0 to 2.0 l/min at a temperature between 10 and 27°C (50 to 80.6°F). Chilled water below 10°C (50°F) is not recommended, see section 9.1.1 Avoidance of Condensation, page 57.

All available models are listed under section 2.1 Overview Comm Boxes, page 13.

The Water Cooled Housing is made from stainless steel. The scope of delivery contains the air purge collar (XXXMI3100AP). The sensing head cable is made from Teflon and limited to 15 m (49 ft).

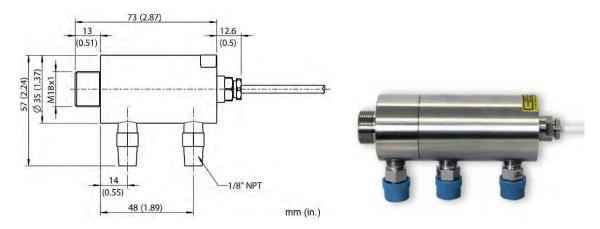


Figure 40: Water Cooled Housing

9.1.1 Avoidance of Condensation

If environmental conditions make water cooling necessary, it is strictly recommended to check whether condensation will be a real problem or not. Water cooling also causes a cooling of the air in the inner part of the sensor, thereby decreasing the capability of the air to hold water. The relative humidity increases and can reach 100% very quickly. In case of a further cooling, the surplus water vapor will condense out as water. The water will condense on the lenses and the electronics resulting in possible damage to the sensor. Condensation can even happen on an IP65 sealed housing.

There is no warranty repair possible in case of condensation within the housing!

To avoid condensation, the temperature of the cooling media and the flow rate must be selected to ensure a <u>minimum</u> device temperature. The minimum sensor temperature depends on the ambient temperature and the relative humidity. Please consider the following table.

Relative	Humidity	[%]
Relative	HUIIIIUILV	1 /01

		10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/
	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
	5/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	5/
	41	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	41
	10/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	5/	5/	5/	5/	5/	10/
	50	32	32	32	32	32	32	32	32	32	32	32	32	32	41	41	41	41	41	50
	15/	0/	0/	0/	0/	0/	0/	0/	0/	0/	5/	5/	5/	5/	10/	10/	10/	10/	10/	15/
	59	32	32	32	32	32	32	32	32	32	41	41	41	41	50	50	50	50	50	59
FJ	20/	0/	0/	0/	0/	0/	0/	5/	5/	5/	10/	10/	10/	10/	15/	15/	15/	15/	15/	20/
C,	68	32	32	32	32	32	32	41	41	41	50	50	50	50	59	59	59	59	59	68
\mathbf{l}_{\circ}	25/	0/	0/	0/	0/	5/	5/	10/	10/	10/	10/	15/	15/	15/	20/	20/	20/	20/	20/	25/
	77	32	32	32	32	41	41	50	50	50	50	59	59	59	68	68	68	68	68	77
ur	30/	0/	0/	0/	5/	5/	10/	10/	15/	15/	15/	20/	20/	20/	20/	25/	25/	25/	25/	30/
Temperature	86	32	32	32	41	41	50	50	59	59	59	68	68	68	68	77	77	77	77	86
ē	35/	0/	0/	5/	10/	10/	15/	15/	20/	20/	20/	25/	25/	25/	25/	30/	30/	30/	30/	35/
η	95	32	32	41	50	50	59	59	68	68	68	77	77	77	77	86	86	86	86	95
en	40/	0/	5/	10/	10/	15/	20/	20/	20/	25/	25/	25/	30/	30/	30/	35/	35/	35/	35/	40/
	104	32	41	50	50	59	68	68	68	77	77	77	86	86	86	95	95	95	95	104
'n	45/	0/	10/	15/	15/	20/	25/	25/	25/	30/	30/	35/	35/	35/	35/	40/	40/	40/	40/	45/
<u>ie</u>	113	32	50	59	59	68	77	77	77	86	86	95	95	95	95	104	104	104	104	113
mbient	50/	5/	10/	15/	20/	25/	25/	30/	30/	35/	35/	35/	40/	40/	40/	45/	45/	45/	45/	50/
ΑI	122	41	50	59	68	77	77	86	86	95	95	95	104	104	104	113	113	113	113	122
	60/ 140	15/	20/	25/ 77	30/ 86	30/	35/	40/ 104	40/ 104	40/	45/ 113	45/	50/	50/	50/	50/	50/	50/	50/	60/ 140
	70/	59 20/	68 25/	35/	35/	86 40/	95 45/	45/	50/	104 50/	50/	113 50/	122 50/	122 60/	122 60/	122 60/	122 60/	122 60/	122 60/	140
	70/ 158	68	77	95	95	104	45/ 113	113	122	122	122	122	122	140	140	140	140	140	140	
	80/	25/	35/	40/	45/	50/	50/	50/	60/	60/	60/	60/	60/	140	140	140	140	140	140	
	176	25/ 77	95	104	113	122	122	122	140	140	140	140	140							
	90/	35/	40/	50/	50/	50/	60/	60/	60/	140	140	140	140							
	90/ 194	95	104	122	122	122	140	140	140											
	100/	40/	50/	50/	60/	60/	170	140	140											
	212	104	122	122	140	140														
	212	10	122	122	140	140		l	l		l	l	l				l			

Tab. 5: Minimum device temperatures [°C/°F]

Example:

Ambient temperature = $50 \, ^{\circ}$ C Relative humidity = $40 \, ^{\circ}$ C Minimum device temperature = $30 \, ^{\circ}$ C

The use of lower temperatures is at your own risk!

Temperatures higher than 60°C (140°F) are not recommended due to the temperature limitation of the sensor.

9.2 Intrinsic Safety

Attention! Important note on the approval of the ATEX system!

Due to the classification of the Ex Power Supply for the gas explosion group IIB, the infrared sensing heads may only be used in IIB. No use in hydrogen, acetylene or carbon disulphide atmosphere allowed!

9.2.1 Sensing Heads

The sensing heads for the MI3, MI3xxLTH, and MI3100 series are available as intrinsic safety rated sensing heads (...IS) intended for use in explosive atmospheres.

The sensing heads xxMI3xxxISx and xxxMI3100xxxISx follow the ATEX / IECEx certification in accordance to:

Certificate: BVS 12 ATEX E 140 IECEX BVS 15.0051

II 2G Ex ib IIC T4 Gb Ex ib IIC T4 Gb

II 2D Ex ib IIIC T135°C Db Ex ib IIIC T135°C Db

The ambient temperature range for these sensing heads is specified as follows:

LT, G5 -10 to 120°C (14 to 248°F) 1M, 2M 0 to 120°C (32 to 248°F)

The intrinsically safe sensing heads 1M/2M are available with water cooled housing. The water cooled housing can provide a cooler, more stable operating environment for the sensing head but does not allow for approved intrinsically safe operation when external ambient conditions are exceeding the ambient temperature ranges.

The sensing heads xxxMI3xxLTHISx follow the ATEX / IECEx certification in accordance to:

Certificate: BVS 12 ATEX E 140 IECEx BVS 15.0051

II 2G Ex ib IIC T4/T3 Gb Ex ib IIC T4/T3 Gb

II 2D Ex ib IIIC T135°C/185°C Db Ex ib IIIC T135°C/185°C Db

The ambient temperature range for these sensing heads is specified as follows:

LTH sensing head -10 to 180°C (14 to 356°F) Detached electronic unit -10 to 120°C (14 to 248°F)

For further information to relevant standards and the examination certificate, see section 19.3 ATEX Certificate of Conformity for Sensing Heads, page 133 and section 19.5 IECEx Certificate of Conformity for Sensing Heads, page 139.

9.2.2 Ex Power Supply

9.2.2.1 Ex Power Supply for non-hazardous areas

The Ex Power Supply RAYMI3ACISx must be used to operate ATEX / IECEx certified sensing heads in hazardous environments. The Ex Power Supply is installed in a non-hazardous area to supply power to intrinsically safe sensing heads. The Ex Power Supply is to be ordered separately (RAYMI3ACISx). The Ex Power Supply follows the ATEX / IECEx certification in accordance to:

Certificate:	BVS 12 ATEX E 140	IECEx BVS 15.0051
⟨£x⟩	II (2)G [Ex ib Gb] IIB	[Ex ib Gb] IIB
(CX)	II (2)D [Ex ib Db] IIIC	[Ex ib Db] IIIC

The Ex Power Supply is specified as follows:

Power supply 115 / 230 VAC, 50/60 Hz, 0.1 A, internal fuse 0.25 A (nonexchangeable)

Operating temperature -10 to 65°C (14 to 149°F) Storage temperature -20 to 85°C (-4 to 185°F)

Rating IP65

Material Aluminum, die casted

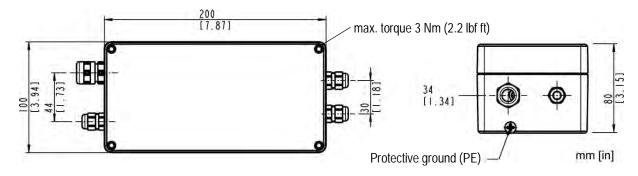
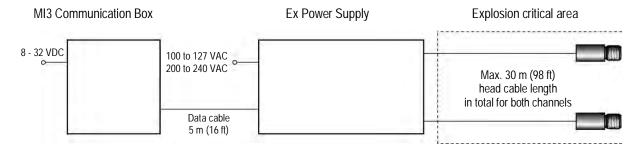



Figure 41: Dimensions of Housing for Ex Power Supply

For further information to relevant standards and the examination certificate, see section 19.4 ATEX Certificate of Conformity for Ex Power Supply, page 136 and section 19.6 IECEx Certificate of Conformity for Ex Power Supply, page 143.

9.2.3 Installation

The basic installation of sensing heads and the Ex Power Supply is shown in the following figure.

Mains is selected by switch. Before installation please check local mains voltage to avoid damage!

Figure 42: Basic Installation in the Explosion Critical Area

The Ex Power Supply can drive a maximum of two sensing heads. For additional sensing heads in the explosion-critical area, therefore, a further Ex Power Supply is to be used. Since the MI3 communication box can control up to eight sensing heads, no further communication box is required for the entire system, see the following figure.

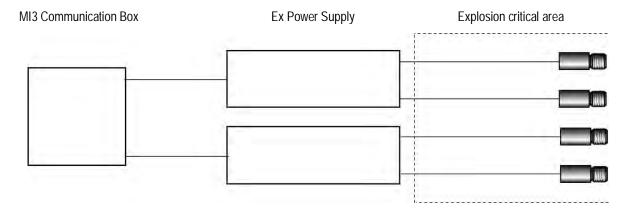


Figure 43: Principle of multi-head installation in an explosion critical area

In areas with explosive environments, only intrinsically safe sensing heads must be used!

The total sensing head cable length per ex power supply must not exceed 30 m (98 ft)!

The standard data cable length to the communication box is 5 m (16 ft). In response to the interference in the environment the length of the cable may be up to 30 m (98 ft). Use only shielded cable with low capacitance about 100 pF/m (33 pF/ft).

The following illustration shows the external wiring of the Ex Power Supply with the sensing heads, the communication box and the mains supply.

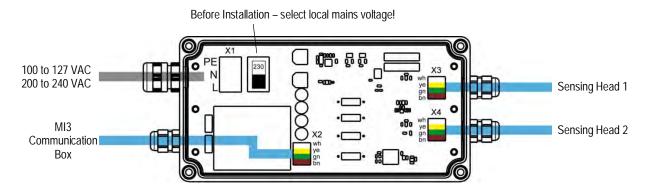


Figure 44: External Wiring of the Ex Power Supply

To wire the mains supply, see the following section 9.2.4 Mains Supply, page 62. For the installation of the sensing head cable and the cable for the communication box the color coding

for the individual wires needs to be considered. For the EMC compliant connection of the cable with the grommet follow the implementation order illustrated in the figure below.

Figure 45: EMC Compliant Connection for the Cables for Sensing Heads and Communication Box

¹ © photo courtesy of HUGRO-Armaturen GmbH

9.2.4 Mains Supply

The Ex Power Supply does not include a power switch. You must supply a mains disconnect switch. This switch should be in close proximity to the operator and clearly marked as the power shutoff for the equipment.

If you use a line conditioner or isolation transformer, connect it according to the manufacturer's instructions. Please observe grounding instructions and make sure earth ground is supplied to the terminal block of the Ex Power Supply, see Figure 41.

All local electrical codes related to installation and grounding of electrical equipment should be followed.

- Before installation select the correct local mains voltage via the switch on the circuit board of the Ex Power Supply, see Figure 46.
- A ground wire must be connected to the (PE protective earth) terminal on the circuit board of the Ex Power Supply.
- To prevent possible electrical shock, fire or personal injury, make sure that the processor box is grounded before use.
- Follow all local electrical codes related to installation and grounding of electrical equipment.

To prevent personal injury, make sure the mains disconnect switch is off before opening the box lid.

The protective earth screw (marked with $\stackrel{\bigoplus}{}$ and found on the front side of the Ex Power Supply) requires connection to the local ground by using a 6 mm² (AWG 10) green/yellow wire.

Switch Position	Mains voltage range
115	100 to 127 VAC, 50/60 Hz
230	200 to 240 VAC, 50/60 Hz

Figure 46: Switch Positions for Selecting the Mains Voltage Range

Terminal X1						
L	N	PE				
100-240 VAC live	100-240 VAC neutral	Protective Earth				

Figure 47: Connecting the Power Cord to the Terminal in the Ex Power Supply

The Earth Ground wire should be slightly longer than the two other wires, so if the cable is accidentally pulled, the line and neutral wires are disconnected first.

You need to connect the AC mains. Only cable with 3 wires in a size of 1.5 to 2.5 mm² (AWG 14 to 16) should be used.

An external 6 to 16 A line fuse (type B) or an equivalent circuit breaker is required for the AC mains installation.

10 Accessories

A full range of accessories for various applications and industrial environments are available. Accessories include items that may be ordered at any time and added on-site.

10.1 Accessories (all models)

- Multi-Channel Box (XXXMI3CONNBOX)
- USB/RS485 Adapter for boxes with RS485 interface (XXXUSB485)

10.1.1 Multi-Channel Box

The Multi-Channel Box can be used for all communication boxes. The box includes 8 sets of field wiring terminals wired in parallel to one 5 m (16 ft) cable set to connect to the communication box.

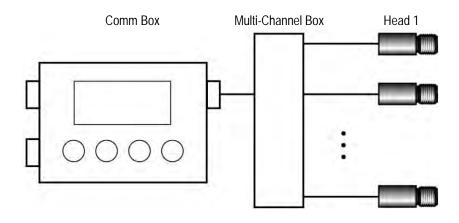


Figure 48: Multiple Head Configuration with Comm Box

Technical Data

Ambient Temperature -20 to 100°C (-4 to 212°F)

Storage Temperature -20 to 100°C (-4 to 212°F)

Rating IP65 (NEMA-4) / IEC 60529

Relative Humidity 10% to 95% non-condensing

Vibration 11 to 200 Hz, 3 g above 25 Hz operating, 3 axes / IEC 60068-2-6

Shock 50 g, 11 ms, operating, 3 axes / IEC 60068-2-27

The Multi-Channel Box must not be used with Ex power supply IS unit for wiring heads!

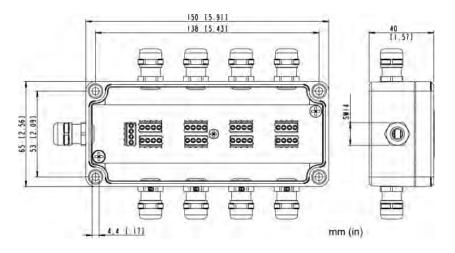


Figure 49: Dimensions

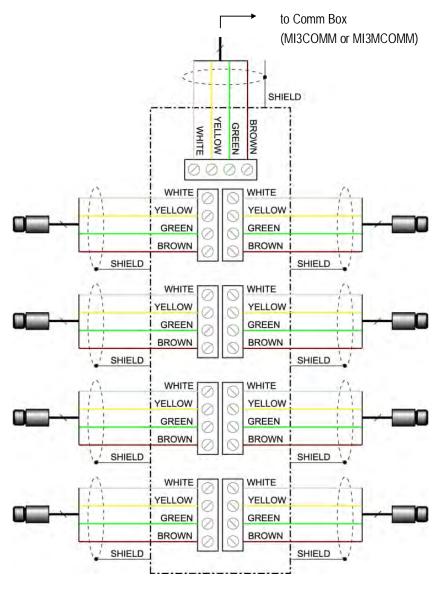


Figure 50: Wiring Diagram for 8 Heads

Accessories

Please note the correct mounting of the cable shield requires a strong metallic contact to the grommet.

Figure 51: Correct Mounting of the Cable Shield

The total sensing head cable length for all networked sensing heads must not exceed 30 m/98 ft (for MI3) and 2x30 m/2x98 ft (for MI3M)!

10.1.2 USB/RS485 Adapter

The USB/RS485 adapter is self-powering via the USB connection.

Figure 52: USB/RS485 Adapter (XXXUSB485)

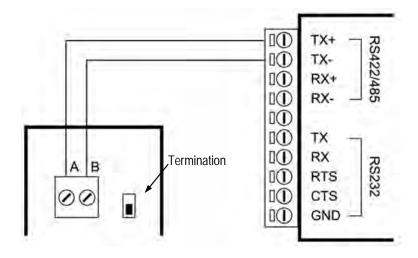


Figure 53: Wiring the RS485 Interface of the Box (left) and USB/RS485 Adapter (right)

10.2 Accessories (LT, G5 Heads)

- Adjustable Mounting Bracket (XXXMIACAB)
- Fixed Mounting Bracket (XXXMIACFB)
- Sensing head mounting nut (XXXMIACMN)
- Air Purge Jacket (XXXMIACAJ)
- Air Cooling System with 0.8 m (2.6 ft.) air hose (XXXMIACCJ) or with 2.8 m (9.2 ft.) air hose (XXXMIACCJ1)
- Right Angle Mirror (XXXMIACRAJ, XXXMIACRAJ1)
- Protective Windows
- Close Focus Lens (XXXMI3ACCFL)

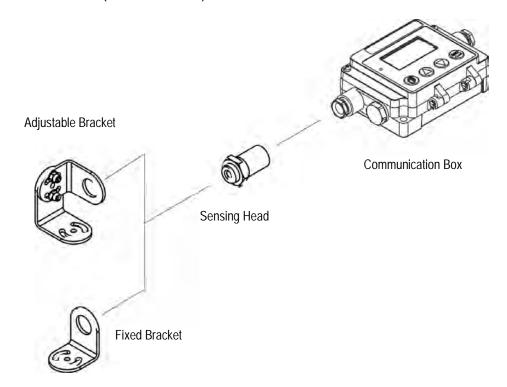


Figure 54: Standard Accessories for LT, G5 Heads

10.2.1 Adjustable Mounting Bracket

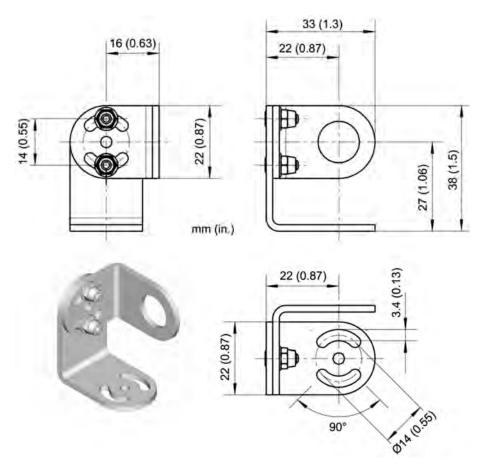


Figure 55: Adjustable Mounting Bracket (XXXMIACAB)

10.2.2 Fixed Mounting Bracket

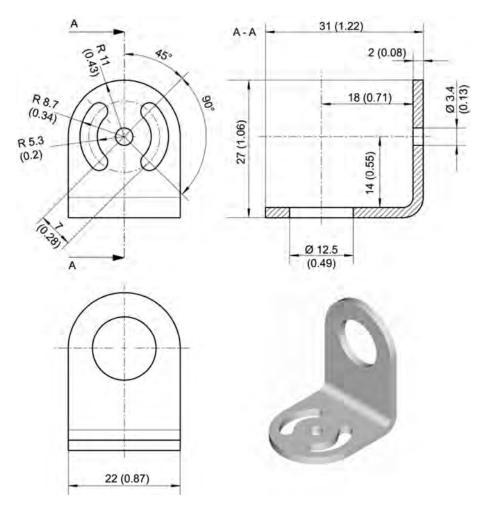


Figure 56: Fixed Mounting Bracket (XXXMIACFB)

10.2.3 Air Purge Jacket

For LTH sensing heads, the Air Purge Jacket is only available pre-mounted from the factory (XXXMIACAJI)!

The air purge jacket is used to keep dust, moisture, airborne particles, and vapors away from the sensing head. Clean, oil free air is recommended. The air purge jacket withstands ambient temperatures up to 180°C (356°F) and has limited use for cooling purposes. The recommended air flow rate is 30 to 60 I / min (0.5 to 1 cfm). The max. pressure is 5 bar (73 PSI).

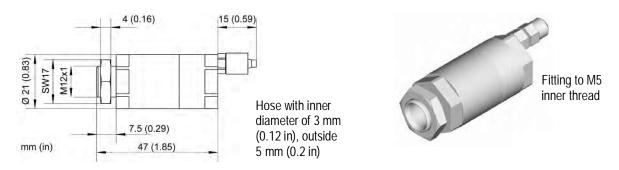


Figure 57: Air Purge Jacket (XXXMIACAJ)

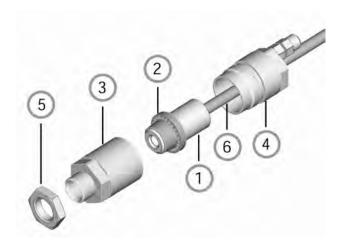


Figure 58: Mounting the Air Purge Jacket

- 1. Remove the sensor ① and cable from the communication box by disconnecting the wires from the terminal.
- 2. Open the Air Purge Jacket ③ ④ and screw the white plastic fitting ② onto the sensor up to the end of the threads. Do not over-tighten!
- 3. Slip the cable 6 through the backside 4 of the jacket.
- 4. Close the Air Purge Jacket ③ ④, reconnect the wires to the communication box and apply the mounting nut ⑤.

10.2.4 Air Cooling System

For LTH heads, the Air Cooling System can only be ordered pre-assembled at the factory!

The sensing head can operate in ambient temperatures up to 200°C (392°F) with the air-cooling system. The air-cooling system comes with a T-adapter including 0.8 m / 31.5 in (optional: 2.8 m / 110 in) air hose and insulation. The T-adapter allows the air-cooling hose to be installed without interrupting the connections to the box.

The air-cooling jacket may be combined with the right angle mirror.

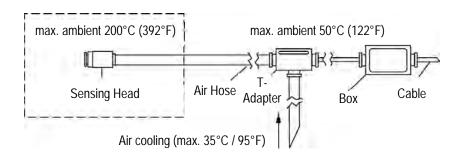


Figure 59: Air Cooling System (XXXMIACCJ)

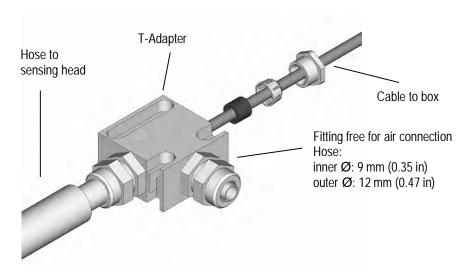


Figure 60: Connecting the T-Adapter

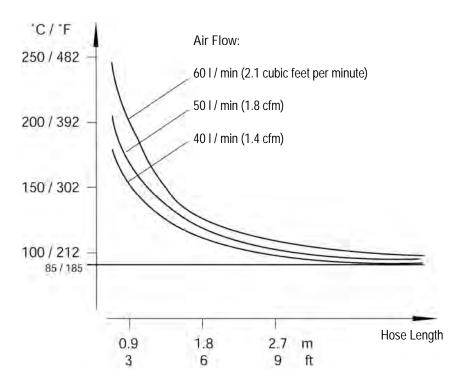


Figure 61: Maximum Ambient Temperature is dependent on Air Flow and Hose Length

Note: "Hose Length" is the length of the hose exposed to high ambient temperature (not the overall length of the hose).

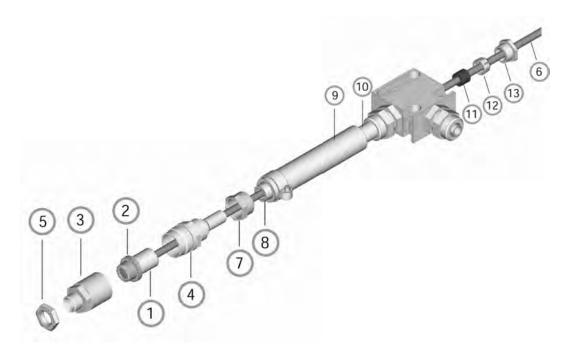


Figure 62: Air Cooling System: Purging Jacket and T-Adapter

The Air Cooling System consists of:

- sensing head
- ② inner plastic fitting (air purge jacket)
- ③ front part of the air-purging jacket
- (4) back part of the air-purging jacket
- ⑤ mounting nut
- 6 preinstalled cable between sensor and box, leading through the T-adapter
- 7 hose connecting nut
- Inner hose
- 9 outer hose
- 10 T-adapter
- 11 rubber washer
- 12 plastic compression fitting
- (13) cap

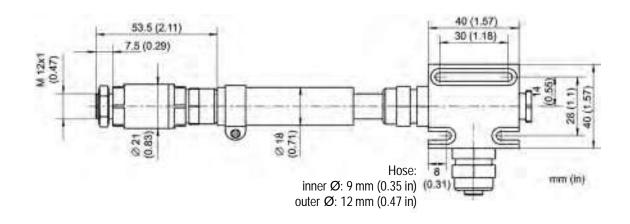


Figure 63: Dimensions of Air Cooling System

10.2.5 Right Angle Mirror

The right angle mirror comes in two different versions:

xxxmiacraj right angle mirror as accessory for air purge jacket or air cooling system xxxmiacraj right angle mirror with integrated air purge (not available for LTH sensing heads)

Figure 64: Right Angle Mirror XXXMIACRAJ (left), Right Angle Mirror with Air Purge XXXMIACRAJ1 (right)

The right angle mirror withstands ambient temperatures up to 180°C (356°F). For mounting the right angle mirror (XXXMIACRAJ), see section 10.2.3 Air Purge Jacket, page 70. However, instead of using the front part of the air purge jacket ③, mount the right angle mirror.

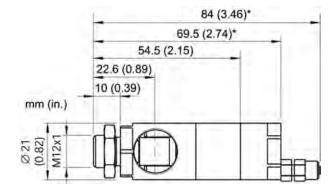


Figure 65: Right Angle Mirror (* with Air Purge)

The IR beam length within the right angle mirror is 18 mm (0.7 in.) which needs to be considered for spot size calculations.

10.2.6 Protective Windows

Protective windows can be used to protect the sensing head from dust and other contamination.

The protective window can be directly screwed onto the sensing head. It has an outer diameter of 17 mm (0.67 in).

The following table provides an overview of the available windows.

Order number	Material	Transmission	T ambient
XXXMIACPW	holder: stainless steel window: Zinc Sulfide (visually transparent, flat)	0.75 ± 0.05 (for LT, G5 models)	180°C (356°F)
XXXMI3ACPWP	holder: stainless steel window: Polymer (milky transparent, flat)	0.7 ±0.02 (LT models only)	65°C (149°F)

Table 6: Available Protective Windows

For correct temperature readings, the transmission of the protective window must be set via the control panel in the communication box. See section 8.2 < Head> Page, page 49! Make sure the measuring head and the protection window are at the same temperature!

Figure 66: Protective Window

10.2.7 Close Focus Lens

The close focus lens is designed to get very small measurement spots down to 0.5 mm (0.02 in). The lens should be used for LT models only.

The close focus lens has an outer diameter of 17 mm (0.67 in) and can be directly screwed onto the sensing head.

Order number	Material	Transmission	T ambient
XXXMI3ACCFL	holder: stainless steel window: Silicon (visually opaque, curved)	0.75 ± 0.05 (for LT models)	180°C (356°F)

Table 7: Close Focus Lens

For correct temperature readings, the transmission of the close focus lens must be set via the control panel in the communication box. See section 8.2 <Head> Page, page 49! Make sure the measuring head and the close focus lens are at the same temperature!

Figure 67: Sensing Head with Close Focus Lens (XXXMI3ACCFL)

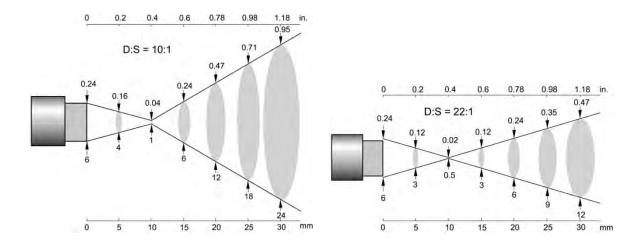


Figure 68: Spot Size Charts for Close Focus Lens

10.3 Accessories (1M, 2M Heads)

- Fixed Mounting Bracket (XXXMI3100FB)
- Adjustable Mounting Bracket (XXXMI3100ADJB)
- Isolation Kit (MI3100ISOKIT)
- Air Purge Collar (XXXMI3100AP)
- Right Angle Mirror (XXXMI3100RAM)
- Protective Window (XXXMI3100PW)

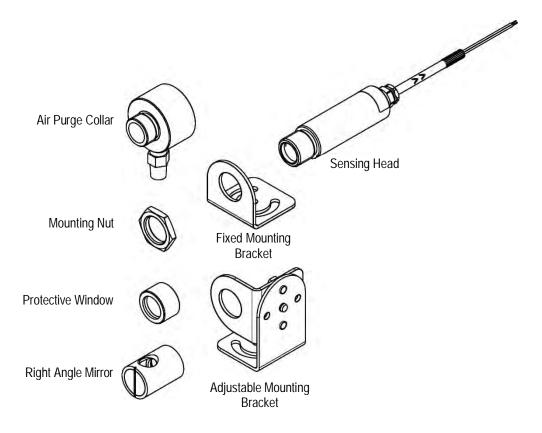


Figure 69: Overview of available accessories

10.3.1 Fixed Mounting Bracket

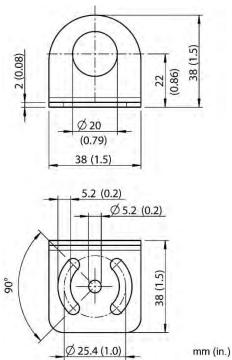


Figure 70: Dimensions of Fixed Mounting Bracket (XXXMI3100FB)

10.3.2 Adjustable Mounting Bracket

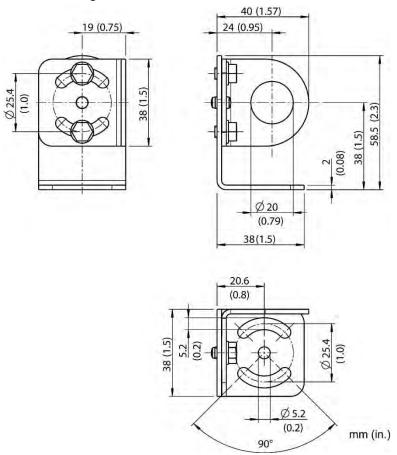


Figure 71: Dimensions of Adjustable Mounting Bracket (XXXMI3100ADJB)

10.3.3 Isolation Kit

The isolation kit (MI3100ISOKIT) can be used likewise for the fixed mounting bracket (XXXMI3100FB) and the adjustable mounting bracket (XXXMI3100ADJB). Two non-conductive rings insulate the sensing head (1M, 2M) electrically from the mounting bracket. The isolation kit is used to implement installations with one earth grounded point only, see section 4.5 Electrical Interference, page 23.

The maximal ambient temperature for the isolation kit is 250°C (482°F). The delivery for the isolation kit consists of two insulating rings made of Teflon and a mounting nut made of stainless steel. The desired mounting bracket needs to be ordered separately.

Make sure that the insulating rings are mounted so that both extruded lips facing each other. Use the two mounting nuts to secure the arrangement.

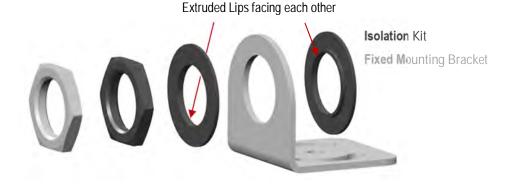


Figure 72: Installing the Isolation Kit (MI3100ISOKIT) Exemplary shown for fixed mounting bracket

Figure 73: Fixed Mounting Bracket with Isolation Kit

Installing the Isolation Kit requires a mounting bracket in its latest version (inner diameter of 20 mm (0.79 in) instead of 18.5 mm (0.73 in) for the previous version)!

10.3.4 Air Purge Collar

The Air Purge Collar is used to keep dust, moisture, airborne particles, and vapors away from the lens. It can be mounted before or after the bracket. The Air Purge Collar comes with a 1/8" NPT stainless steel fitting. Air flows into the fitting and out the front aperture. The pressure of air should be 0.6 to 1 bar (8.7 to 15 PSI). Clean, oil free air is recommended.

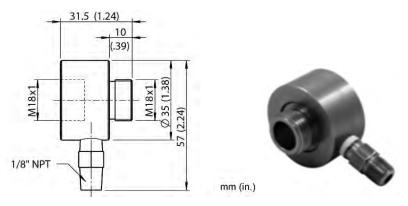


Figure 74: Dimensions of Air Purge Collar (XXXMI3100AP)

10.3.5 Right Angle Mirror

The Right Angle Mirror is used to turn the field of view by 90° against the sensor axis. It is recommended when space limitations or excessive radiation do not allow for direct alignment of the sensor to the target. The mirror must be installed after the bracket and after the Air Purge Collar and screwed in fully. In dusty or contaminated environments, air purging is required to keep the mirror surface clean.

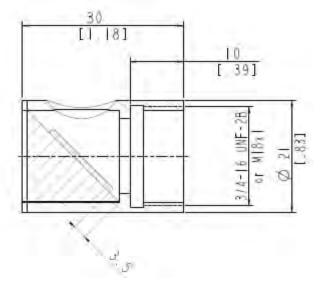


Figure 75: Dimension of Right Angle Mirror (XXXMI3100RAM)

When using the Right Angle Mirror, adjust the emissivity or transmissivity settings downward by 5%. For example, for an object with an emissivity of 0.65, you adjust the value down to 0.62. Or, you can keep the emissivity 0.65 and adjust the transmissivity from 1.0 to 0.95. This correction accounts for energy losses in the mirror.

10.3.6 Protective Window

Protective windows can be used to protect the sensing head from dust and other contamination. The protective window can be directly screwed onto the sensing head.

The following table provides an overview of the available windows.

Order number	Material	Transmission	T ambient
XXXMI3100PW	holder: stainless steel window: fused silica	0.93 ± 0.05 (for 1M, 2M models)	120°C (248°F)

Table 8: Available Protective Windows

For correct temperature readings, the transmission of the protective window must be set via the control panel in the communication box. See section 8.2 <Head> Page, page 49! Make sure the measuring head and the protection window are at the same temperature!

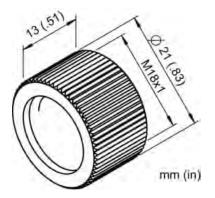


Figure 76: Protective Window

11 Maintenance

Our sales representatives are always at your disposal for questions regarding application assistance, calibration, repair, and solutions to specific problems. Please contact your local sales representative, if you need assistance. In many cases, problems can be solved over the telephone. If you need to return equipment for servicing, calibration, or repair, please call our Service Department for authorization prior to return. Phone numbers are listed at the beginning of this document.

11.1 Troubleshooting Minor Problems

Symptom	Probable Cause	Solution
No output	No power to instrument	Check the power supply
Erroneous temperature	Faulty sensor cable	Verify cable continuity
Erroneous temperature	Field of view obstruction	Remove the obstruction
Erroneous temperature	Window lens	Clean the lens
Erroneous temperature	Wrong emissivity	Correct the setting
Temperature fluctuates	Wrong signal processing	Correct Peak/Valley Hold or Average settings
Temperature fluctuates	No ground for the head	Check wiring / grounding

Table 9: Troubleshooting

11.2 Fail-Safe Operation

The Fail-Safe system is designed to alert the operator and provide a safe output in case of any system failure. The sensor is designed to shutdown the process in the event of a set-up error, system error, or a failure in the sensor electronics.

The Fail-Safe circuit should never be relied on exclusively to protect critical processes. Other safety devices should also be used to supplement this function!

When an error or failure does occur, the display indicates the possible failure area, and the output circuits automatically adjust to their preset levels. See the following tables:

Symptom	0 to 5 V	0 to 10 V	0 to 20 mA	4 to 20 mA
Temperature over range*	5 V	10 V	21 to 24 mA	21 to 24 mA
Temperature under range*	0 V	0 V	0 mA	2 to 3 mA
Head ambient temperature out of range	5 V	10 V	21 to 24 mA	21 to 24 mA
Communication error between head and box	5 V	10 V	21 to 24 mA	21 to 24 mA

^{*} related to zoomed temperature range

Table 10: Error Codes for Analog Output

Symptom	J	K	R	S
Temperature over range	> 1200°C	> 1372°C	> 1768°C	> 1768°C
	(2192°F)	(2502°F)	(3214°F)	(3214°F)
Temperature under range	-210°C	-210°C	-50°C	-50°C
	(-346°F)	(-346°F)	(-58°F)	(-58°F)
Head ambient temperature out of range	> 1200°C	> 1372°C	> 1768°C	> 1768°C
	(2192°F)	(2502°F)	(3214°F)	(3214°F)

Table 11: Error Codes for Thermocouple Output TC

Output	Error Code Description
T	Communication error between head and box
T>>>	Temperature over range
T<<<	Temperature under range

Table 12: Error Codes via Field Bus

Display	Error Code Description
"No sensor"	No sensing head detected
"Sensing head #n lost"	Communication error between head and box
">"	Temperature over top range* e.g. ">600°C"
"<"	Temperature under bottom range* e.g. "<-40°C"

^{*} related to full measurement range

Table 13: Error Codes for LCD Display

11.3 Cleaning the Lens

Keep the lens clean at all times. Care should be taken when cleaning the lens. To clean the window, do the following:

- 1. Lightly blow off loose particles with "canned" air (used for cleaning computer equipment) or a small squeeze bellows (used for cleaning camera lenses).
- 2. Gently brush off any remaining particles with a soft camel hair brush or a soft lens tissue (available from camera supply stores).
- 3. Clean remaining "dirt" using a cotton swab or soft lens tissue dampened in distilled water. Do not scratch the surface.

For finger prints or other grease, use any of the following:

- Denatured alcohol
- **Fthanol**
- Kodak lens cleaner

Apply one of the above to the lens. Wipe gently with a soft, clean cloth until you see colors on the surface, then allow to air dry. Do not wipe the surface dry, this may scratch the surface.

If silicones (used in hand creams) get on the window, gently wipe the surface with Hexane. Allow to air dry.

Maintenance

Do not use any ammonia or any cleaners containing ammonia to clean the lens. This may result in permanent damage to the lens' surface!

11.4 Sensing Head Exchange

To exchange a sensing head, the following procedure is required:

- 1. Disconnect power to the box.
- 2. Disconnect all head wires from the box terminal.
- 3. Power the box.
- 4. The alarm indicator of the box starts to blink indicating a lost sensing head.
- 5. Press the button to navigate to the head page indicating a lost sensing head.
- 6. Decide whether you want to select:
 - a) <Remove Yes>: to remove the head permanently from the box by loosing all head parameters (head address de-allocated for other heads, alarm condition is reset) the next head connected later will be detected as a new head and automatically assigned to a free head address.

or

b) <Remove No>: to keep the head assigned to the box by saving all head parameters for a future use without the need to parameterize that head again (head address reserved for that individual head, alarm condition is kept) – the same head connected later will be detected as a known head by keeping the previous address.

12 DataTemp Multidrop Software

12.1 Software Features

DataTemp Multidrop DTMD provides sensor setup, remote monitoring, and simple data logging for analysis or to meet quality record-keeping requirements. Additional features configurable with DTMD Software:

- Eight-position "recipe" table that can be easily interfaced to an external control system
- External reset signal input FTC for signal processing
- External inputs FTC for analog emissivity adjustment or background radiation compensation
- Remote digital communication and control of up to 32 sensors in an RS485 multidrop configuration

For more detailed information, see the comprehensive help feature in the DTMD software.

12.2 PC Requirements

- PC with Windows 2000/XP/Vista/Win7, 64 MB RAM memory
- about 10 Mb free memory on the hard disc for program files
- USB port with recommended USB/RS485 adapter (available as accessory), see section 10.1.2 USB/RS485 Adapter, page 67.

12.3 USB Driver Installation

Before running the DTMD Software the installation of an adequate USB driver is required, see section 5.6 USB, page 36.

12.4 Software Launch

Make sure any sensor is turned on and the USB driver is installed before running DTMD software. The Startup Wizard runs the first time you use the program. Please note:

- The wizard shows active COM ports only!
- The sensor requires the selection of <ASCII protocol>!
- The DTMD software communicates to Comm Boxes only! A multidrop installation is related to a network with multiple Comm Boxes and not to a multiple head system with one Comm box only!

13 RS485

The RS485 serial interface is used for long distances up to 1200 m (4000 ft) or for networked communication boxes.

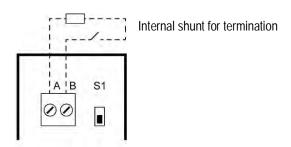
To connect the RS485 interface to a standard computer you should use a dedicated adapter, see section 10.1.2 USB/RS485 Adapter, page 67. The RS485 interface allows the communication either via the standard Multidrop Software or directly via dedicated ASCII commands, see section 18 ASCII Programming, page 117.

Specification:

Physical layer: RS485, 2 wire, half-duplex, electrically isolated

Baud rate: 9.6, 19.2, 38.4, 57.6, 115.2 kBit/s

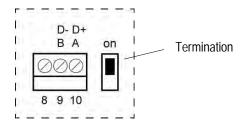
Settings: 8 data bits, 1 stop bit, no parity, flow control: none (half duplex mode)


Connection: terminal Address range: 1 to 32

configurable via the control panel, see section 8.3 <Box Setup> Page, page 50

0 for stand-alone unit or broadcast transmission

13.1 Wiring


13.1.1 Comm Box (metal)

Terminal	RS485
Α	positive signal (or RxA, or D+)
В	negative signal (or RxB, or D-)
S1	Switch for termination

Figure 77: RS485 Terminal for Comm Box (metal)

13.1.2 Comm Box (DIN)

Pin	RS485
8	Shield
9	D- or B (or RxB): negative signal
10	D+ or A (or RxA): positive signal

Figure 78: Terminal for Comm Box (DIN)

13.2 ASCII Programming

For the programming details, see section 18 ASCII Programming, page 117.

14 Profibus

Profibus DP-V0 defines a cyclical data exchange between a master (e.g. a PLC) and a slave (MI3 sensor). At start-up first an array of parameters (Profibus specific data) is sent from the master to the slave, followed by an array with the configuration (sensor specific presetting's taken from the GSD file) also sent from the master to the slave.

After start-up the bus switches to the data exchange state. In this state in- and output data gets exchanged cyclically between master and slave. The input data is sent from the slave to the master and contains mainly the measured temperatures of the MI3 sensor, see section 14.2.2 Input Data, page 94. The output data is sent from the master to the slave and contains a set of selected sensor parameters, see section 14.2.3 Output Data, page 95. In case of an error in start-up phase or during data exchange diagnostic data is sent to the master, see section 14.2.4 Diagnose Data, page 95.

Each Profibus device comes with a device description file (GSD file) which is read by the programming software of the master to define the slave.

Specification:

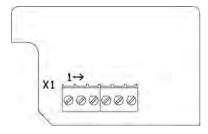
Version: Profibus DP-V0

Physical layer: RS485, 2 wire, electrically isolated

Baud rate: 9.6 kBit/s to 12 MBit/s (automatic negotiated)

Connection terminal or Sub-D or M12 Address range: 1 to 125, for the Profibus device

configurable via the control panel, see section 8.3 <Box Setup> Page, page 50


ID 0D36

GSD Datei RAY_0D36.gsd

Head support up to 8 sensing heads (MI3 or MI3100)

14.1 Wiring

14.1.1 Comm Box (metal)

X1 Pin Terminal

Profibus

1	A (negative signal)
2	B (positive signal)
3	Shield
4	GND (output, used for external termination)
5	n.a.
6	+ 5 V (output, used for external termination)
LED, red	blinking, no data communication
LED, yellow	ON: data-exchange

Figure 79: Profibus Terminal for Comm Box (metal)

A Sub-D female connector or a M12 female connector can be ordered separately for Profibus. The M12 connector is B-coded. Please note the Sub-D connector is not IP rated!

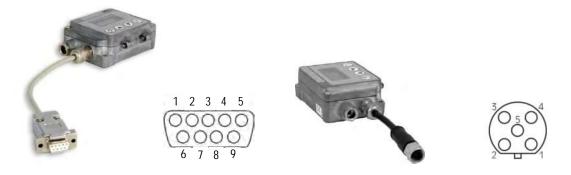


Figure 80: Sub-D Connector (...P2) and M12 Connector (...P1)

Profibus	Sub-D Pin (cable color)	M12 Pin (cable color)
A (negative signal)	8 (green)	2 (white)
B (positive signal)	3 (yellow)	4 (black)
Shield		
GND	5 (white)	3 (blue)
n.a.		
+ 5 V	6 (brown)	1 (brown)

Figure 81: Profibus Pin Assignment for Sub-D / M12 Connector

The termination for Profibus networks must be realized externally by the user!

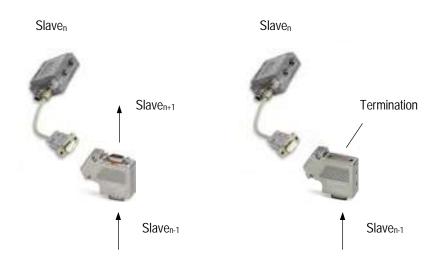
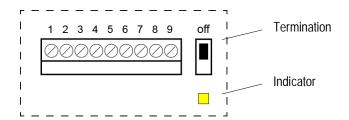



Figure 82: Exemplary Network with External Termination

14.1.2 Comm Box (DIN)

Pin	Profibus	
1	n.a.	
2	Shield	
3 (negative signal)	A2 (not supported while termination "on")	
4 (positive signal)	B2 (not supported while termination "on")	
5 (negative signal)	A1	
6 (positive signal)	B1	
7	Shield	
8	n.a.	
9	DE	
Led, yellow	ON: data-exchange	

Figure 83: Terminal for Comm Box (DIN 6TE)

14.2 Programming

14.2.1 Parameter Data

Byte	Address	Description	Format	Range
	without offset			
0 to 6		Fix		
7		DP-V1 Status1		
8		DP-V1 Status2		
9		DP-V1 Status3		
10	3	Temp. unit	67=°C, 70=°F	67 or 70
11	4	Reserved		
12, 13	5	Bottom temp. of output 1	in 0.1°C /°F	
14, 15	7	Top temp. of output 1	in 0.1°C /°F	
16, 17	9	Bottom temp. of output 2	in 0.1°C /°F	
18, 19	11	Top temp. of output 2	in 0.1°C/°F	
20	13	Source (head) for output-1	head number	18
21	14	Type of source for output-1	73 = I (internal temp.) 84 = T (object temp.)	73 or 84
22	15	Analog output mode 1	5 = TCJ 6 = TCK 7 = TCR 8 = TCS 9 = 05V 10 = 010V 99 = tristate (disabled)	510, 99 default: 9
23	16	Source (head) for output-2	head number	18
24	17	Type of source for output-2	73 = I (internal temp.), 84 = T (object temp.)	73 or 84
25	18	Analog output mode 2	0 = 020mA 4 = 420mA 9 = 05V 10 = 010V 99 = tristate (disabled)	0, 4, 9, 10, 99 default: 4
2639		reserved		
4043		reserved		
44, 45	37	Emissivity Head_1	* 1000 (0.9 → 900)	100 1100
46, 47	39	Transmissivity Head_1	* 1000 (1.0 → 1000)	100 1000
48, 49	41	Averaging time Head_1	* 0.1s (1s → 10)	09990
50, 51	43	Peak hold time Head_1	* 0.1s (1s → 10)	09990
52, 53	45	Valley hold time Head_1	* 0.1s (1s → 10)	09990
54, 55	47	Ambient temp. Head_1	in °C /°F	dev. range min max
56, 57	49	Setpoint relay Head_1	in °C /°F	dev. range min max
58	51	Relay alarm output control Head_1	0 = off 1 = target temp. 2 = internal temp.	0, 1 or 2

Profibus

Byte	Address without offset	Description	Format	Range
59	52	Laser Head_1	0 = off, 1 = on, 2 = flashing	0 or 1
6063		reserved, for future consideration		
64		Head_2		
84	·	Head_3	•	•
104	·	Head_4	·	·
124		Head_5		
144	•	Head_6		
164		Head_7		
184		Head_8		

14.2.2 Input Data

The input data consists of modules that have a fixed position in the data field. There are two types of modules: <Box data> and <Data for one head>.

- Module <Box data> consists of one byte in which bit0 gives the trigger state (configuration 0x12).
- Module <Head data> consists of two bytes object temperature and two bytes head temperature (configuration 0x51). The format is 1/10 °C/°F.

Address	Description	
0	Box data: Trigger state	
1, 2	Box data: Internal temperature	
3, 4	Head 1: Object temperature	
5, 6	Head 1: Head temperature	
7, 8	Head 2: Object temperature	
9, 10	Head 2: Head temperature	
11, 12	Head 3: Object temperature	
13, 14	Head 3: Head temperature	
15, 16	Head 4: Object temperature	
17, 18	Head 4: Head temperature	
19, 20	Head 5: Object temperature	
21, 22	Head 5: Head temperature	
23, 24	Head 6: Object temperature	
25, 26	Head 6: Head temperature	
27, 28	Head 7: Object temperature	
29, 30	Head 7: Head temperature	
31, 32	Head 8: Object temperature	
33, 34	Head 8: Head temperature	

The slave expects one <Box data> module configured at the first position, followed by <Head data> modules. Any other configuration will cause a configuration error.

The input data length gets calculated from the count of configured modules. So, if only one head is connected and configured then only seven bytes are transferred. If all heads (maximal eight) are connected and configured then 35 bytes are transferred. If only one head is connected but eight heads are configured then also 35 bytes are transferred.

14.2.3 Output Data

The device does not have output data in the original meaning. But the output data may be used to change the initialization of the device (which was set once at start-up) when the bus is in data exchange mode.

To do so the following structure is defined:

Address	Description	
0	Type of parameter	
1, 2	Parameter for Head 1	
3, 4	Parameter for Head 2	
5, 6	Parameter for Head 3	
7, 8	Parameter for Head 4	
9, 10	Parameter for Head 5	
11, 12	Parameter for Head 6	
13, 14	Parameter for Head 7	
15, 16	Parameter for Head 8	

The <Type of parameter> comes with the format described in section 14.2.1 Parameter Data, page 93, and can be set to the following parameters:

Number of type	Description
0	do not change anything
1	emissivity
2	laser
3	background temperature (background temperature compensation)
4	averaging time
5	peak hold time
6	valley hold time
7	set point for the relay

If <Type of parameter> is set to 0 then the output data gets ignored. So it should be set to 0 as default.

Attention: You should be aware that always all heads are updated! So you have to set all eight (or as much as heads are connected) parameters to the correct value!

14.2.4 Diagnose Data

The device uses the first 32 bytes of the Identifier Related Diagnosis.

The first 6 bytes consist of Standard Diagnosis dedicated to bus parameters. In this field byte 4 and 5 give the unit identifier (0D36 in our case).

Byte	Description
6	size of the diagnosis
79	reserved
10 (0x0A)	highest address of the connected heads $ ightarrow$ up to which index the user data is valid
11 (0x0B)	box error code
12 22 (0x0C16)	last MI3-command which created an error as answer; ASCII code
23 (0x17)	head_1 error code
24 (0x18)	head_2 error code
25 (0x19)	head_3 error code
26 (0x1A)	head_4 error code
27 (0x1B)	head_5 error code
28 (0x1C)	head_6 error code
29 (0x1D)	head_7 error code
30 (0x1E)	head_8 error code

Table 14: Diagnose Data

Bit	Description
0	Self-test error
1	Box ambient temperature out of range
2	Sensing head communication error
3	Parameter error
4	Register write error

Table 15: Error Bits of Box Diagnose

Bit	Description	
0	Object temperature out of range	
1	Ambient (internal) temperature out of range	
2	Parameter error	
3	Register write error	
4	Self-test error	
5	reserved	
6	Head registered but not connected → cable break?	

Table 16: Error Bits of Head Diagnose

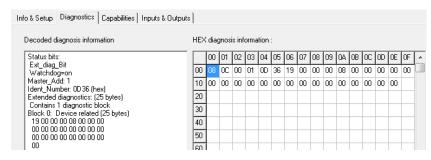


Figure 84: Diagnose Data without Errors

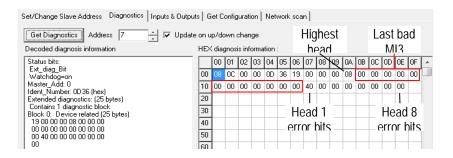


Figure 85: Diagnose Data with Error "Cable Break at Head 1"

15 Modbus

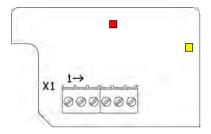
The Modbus protocol follows the master/slave model. One master controls one or more slaves. Typically, the master sends a request to a slave, which in turn sends a response. The request/response mechanism is called a transaction. Requests and responses are also referred to as messages.

Specification:

Version: Modbus serial line (RS485)
Mode: RTU (Remote Terminal Unit)
Physical layer: RS485, 2 wire, electrically isolated
Baud rate: 9.6, 19.2, 38.4, 57.6, 115.2 kBit/s

Connection terminal

Address range: 1 to 247, for the Modbus device


configurable via the control panel, see section 8.3 <Box Setup> Page, page 50

Parity even

The detailed Modbus specification can be found under http://www.modbus.org/.

15.1 Wiring

15.1.1 Comm Box (metal)

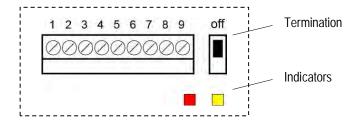

X1 Pin Terminal	Modbus	
1	D0 (negative signal)	
2	D1 (positive signal)	
3	Shield	
4	GND (output, used for external termination)	
5	n.a.	
6	+ 5 V (output, used for external termination)	
LED, yellow	ON while communicating (ON for 2 s on initial power up)	
LED, red	Error (ON for 2 s on initial power up)	

Figure 86: Modbus Terminal for Comm Box (metal)

The termination for Modbus networks must be realized externally by the user!

15.1.2 Comm Box (DIN)

Pin	Modbus	
1	GND (output)	
2	Shield	
3 (negative signal)	D0_2 (not supported while termination "on")	
4 (positive signal)	D1_2 (not supported while termination "on")	
5 (negative signal)	D0_1	
6 (positive signal)	D1_1	
7	Shield	
8	GND (output)	
9	n.a.	
Led, yellow	Communication	
LED, red	Error	

Figure 87: Terminal for Comm Box (DIN 6TE)

15.2 Programming

Functions codes and start addresses are listed in decimal.

15.2.1 Supported Functions

Function code	Modbus Function	Description
01	Read Coils	Read n bits
02	Read Discrete Inputs	Read n bits
03	Read Holding Registers	Read n 16 bit words
04	Read Input Registers	Read n 16 bit words
06	Write Single Register	Write a 16 bit word
16	Write Multiple Registers	Write n 16 bit words

15.2.2 Parameter Data

32 bit registers are transmitted in full Big-Endian mode, meaning most significant word is transmitted first, least significant word is transmitted last. The byte order within a word is Big-Endian as well. While some registers hold integer values, there are some holding floating points. The interchange formats of the IEEE-754 standard for Floating-Point Arithmetic is used for representing floating points. The following table lists all parameters, its content, their formats and usage.

15.2.2.1 Box Parameter

<k> ... number of output channel, depending on the number of physically installed output channels of the Comm Box.

Items (registers, discretes or coils) are addressed starting at zero. Therefore items numbered 1-10000 are addressed as 0-9999.

Start address	Size [bits]	Modbus Access	Data Type	Content	Values	MI3[M] command
1	16	input register	short	error code for last request	0: no error 1: value out of range 2: illegal head number 3: illegal analog output number 4: illegal output mode 5: output disabled error 99: unspecified error	-
10	64	input register	hex	Serial number	e.g. 98123	XV
20	64	input register	string	Unit identification	e.g. MI3COMM	XU
30	64	input register	string	Box Firmware Revision	e.g. 2.10	XR
40	16	input register	short	Modbus slave address	1 247	XAS
50	32	input register	string	Box special	e.g. RAY, LAS	DS
60	32	holding register	integer	Baud rate RS485	9600, 19200, 38400, 57600, 115200	BR
70	16	holding register	char	Temperature Unit	0x43 ('C'), 0x46 ('F')	U
80	32	input register	float	Box Temperature		XJ
90	16	holding register	short	Switch panel lock	0: unlocked, 1: locked	J

Start address	Size [bits]	Modbus Access	Data Type	Content	Values	MI3[M] command
100	8	discretes input	bit field	Get connected heads	bit 0: head 1 bit 7: head 8 bit high: head connected bit low: head disconnected	НС
110	8	discretes input	bit field	Get registered heads	bit 0: head 1 bit 7: head 8 bit high: head registered bit low: head not registered	HCR
120	16	holding register	short	Laser control (only with laser)	0: off, 1: on	XL
130	16	holding register	short	Relay alarm output control	0: off 1: on 2: norm. open 3: norm. closed	КВ
410	32	input register	float	analog input 1 value	0 5 V	TV1I
420	32	input register	float	analog input 2 value	0 5 V	TV2I
430	16	input register	short	Trigger	0: off 1: on	XT
510	16	holding register	short	analog output 1 mode	5: TCJ 6: TCK 7: TCR 8: TCS 9: 05 V 10: 010 V 99: disable (tristate)	X010
520	16	holding register	short	analog output 2 mode	0 - 020 mA 4 - 420 mA 9 - 05 V 10 - 010 V 99 - disable (tristate)	XO2O
5 <k>1</k>	16	holding register	short	analog output k source	head number or 0: fixed value from 5 <k>3</k>	0 <k>0</k>
5 <k>2</k>	16	holding register	short	analog output k source parameter	1: internal temp. of 5 <k>1 2: object temp. of 5<k>1</k></k>	0 <k>0</k>
5 <k>3</k>	32	holding register	float	analog output k fixed temp. value	value within range set in address 5 <k>0</k>	-
5 <k>5</k>	32	holding register	float	analog output k bottom temp. value	device bottom temp device top temp.	L <k>O</k>
5 <k>7</k>	32	holding register	float	analog output k top temp. value	device bottom temp device top temp.	H <k>0</k>

15.2.2.2 Head Parameter

<n $>\dots$ head number, depending on the registered heads

Starting address	Size [bits]	Modbus Access	Data Type	Content	Values	MI3[M] command
<n>005</n>	8	discretes input	bit field	Head Status	bit0: Temperature Unit (0: deg. C, 1: deg. F) bit1: Object temperature out of range bit2: Ambient temperature out of range bit3: Parameter error bit4: Register write error bit5: Self-test error bit7: Background temp. compensation (0: off, 1: on)	HEC
<n>010</n>	64	input register	hex	Head serial number	e.g. 10C02752	HN
<n>020</n>	64	input register	string	Head identification	e.g. "MI310LTS"	HI
<n>030</n>	64	input register	string	Firmware Rev. Head	e.g. 2.10	HV
<n>040</n>	16	input register	short	Head Address	19	HA
<n>050</n>	32	input register	string	Head special	e.g. !99HSRAY (read only)	HS
<n>060</n>	32	input register	float	Device Bottom range	-40 1300 [°C]	ХВ
<n>070</n>	32	input register	float	Device High range	-40 1300 [°C]	XH
<n>080</n>	32	input register	float	Target temperature	number within range <n>060 <n>070</n></n>	T
<n>090</n>	32	input register	float	internal sensor temp.		1
<n>100</n>	32	holding register	float	Ambient background temp. compensation		А
<n>110</n>	32	holding register	float	Advanced hold with average	0 999.9 [s]	AA
<n>120</n>	16	holding register	short	Control ambient background temp. compensation	0: sensor temp. 1: via number 2: via ext. input	AC
<n>130</n>	16	holding register	short	Laser control (only with laser device)	0: OFF, 1: ON	HL
<n>140</n>	16	holding register	short	Relay alarm output control	0: off 1: Target 2: Ambient	KH
<n>150</n>	32	holding register	float	Advanced hold threshold	number within range <n>060 <n>070</n></n>	С
<n>160</n>	32	input register	float	Currently calculated emissivity	0.1 1.1	CE
<n>170</n>	32	input register	float	Current calculation setpoint / relay function	number within range <n>060 <n>070</n></n>	CS
<n>180</n>	32	holding register	float	Sensor Gain	0.8 1.2	DG
<n>190</n>	32	holding register	float	Sensor Offset	-200 C +200 C	DO
<n>200</n>	32	holding register	float	Emissivity internal	0.1 1.1	E
<n>210</n>	16	holding register	short	Presel. Emissivity Pointer	07	EP

Starting address	Size [bits]	Modbus Access	Data Type	Content	Values	MI3[M] command
<n>220</n>	16	holding register	char	Emissivity Source	I: internal command E: ext. input (0V 5V) D: digital selected FTC1-3	ES
<n>230</n>	32	holding register	float	Presel. Emissivity	0.1 1.1	EV
<n>240</n>	32	holding register	float	Valley hold time	0.0 998.9s (999: infinite)	F
<n>250</n>	32	holding register	float	Average time	0.0 999.0 [seconds]	G
<n>260</n>	32	holding register	float	Peak hold time	0.0 998.9 [seconds] (999: infinite)	Р
<n>270</n>	32	input register	integer	Power / AD value		Q
<n>280</n>	32	holding register	float	Presel. Setpoint		SV
<n>290</n>	32	holding register	float	Transmissivity	0.1 1.0	XG
<n>300</n>	16	holding register	short	FTC3 trigger/hold	1: trigger, 2: hold	XN
<n>310</n>	32	holding register	float	Setpoint relay function	number within range <n>060 <n>070</n></n>	XS
<n>320</n>	32	holding register	float	Adv. hold hysteresis		XY

16 Ethernet

Specification:

Ethernet: 10/100 MBit/s, Auto-Negotiation

DHCP or fixed IP address

configurable via the control panel, see section 8.3 <Box Setup> Page, page 50

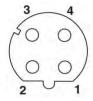
Protocols: TCP/IP version 4, default port 6363

UDP, default port 6363

http web server (port 80) capability supporting up to 8 sensing heads

Connection: M12 or RJ45

electrically isolated

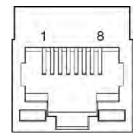


An opened Ethernet port will be closed automatically by the MI3 communication box if there is no data traffic within the time given by the <TTI> command!

16.1 Wiring

16.1.1 Comm Box (metal)

The connector on the box side is an M12 plug-in connector, 4 pin D-coded, suited for industrial Ethernet with IP67 protection rate with a screw retention feature. An M12/RJ45 connector adapter cable is available at a length of 7.5 m / 25 ft withstanding up to 70°C / 158°F for the ambient temperature (XXXETHLTCB).



M12-Pin	
1	TX+
2	RX+
3	TX-
4	RX-

Figure 88: M12 Connector Socket and Pin Assignment

16.1.2 Comm Box (DIN)

The connector on the box side is a standardized RJ45 connector.

RJ45-Pin	
1	TX+
3	RX+
2	TX-
6	RX-

Figure 89: RJ45 Connector Socket and Pin Assignment

16.2 Addressing

16.2.1 MI3

The factory default IP address for the linescanner is 192.168.42.130.

The IP address for the MI3 is not free of choice: It has to be unique in the network meaning that no other device in the network including the PC network adapter may run at the same IP address. The IP address for the MI3 can be set directly via the control panel.

Ask your IT administrator for a free IP address to be used!

Advanced Ethernet Settings

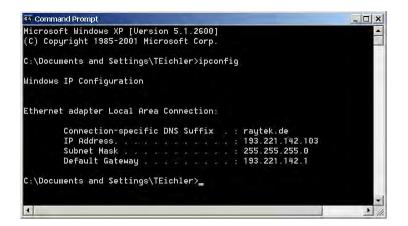
Subnet Mask:

The Subnet Mask defines the interpretation of the IP address. The factory default setting is 255.255.255.0. The Subnet Mask can be changed using the <NM> command of the MI3.

Port:

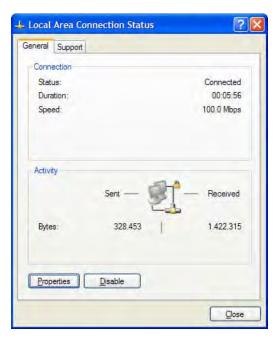
In the case that the default port 6363 for the MI3 should conflict with something else (it could be blocked by the firewall for example) it can be changed using the <PORT> command.

Gateway:


A gateway connects two subnets (which have a different subnet address). The IP address of the gateway is given with the MI3 command <GW>.

To establish the Ethernet communication, the subnet addresses for both the MI3 and the PC need to match! Appropriate changes can be applied either on the MI3 side or on the PC network adapter!

The current settings for the IP address and the netmask of the PC can be asked with the command <ipconfig> in a Command Prompt window!



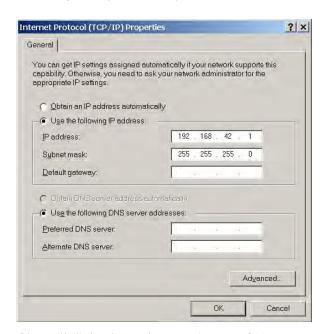
For the example above, the IP address of the PC is 193.221.142.103. The subnet address is 193.221.142, the host address is 103. The MI3 subnet address must be 193.221.142 as well. The host address of the MI3 must be in the range from 1 to 254 with the exception of 103 which is already used for the PC.

16.2.2 PC Network Adapter

The network adapter on the PC side can be configured as following:

- 1. Go to <Start> <Settings> <Network Connections> <Local Area Connection>
- 2. Click on <Properties>:

Under <This connection uses the following items> select <Internet Protocol (TCP/IPv4)> and click on <Properties>:


4. Activate the radio button <Use the following IP address> and make the following settings:

IP address: 192.168.42.x

where x is an address between 0 and 255 except 130 which is already

used by the MI3 by factory default

Subnet mask: 255.255.255.0 Default gateway: {empty}

5. Close all dialog boxes by pressing on <OK>.

16.3 ASCII Programming

For the programming details, see section 18 ASCII Programming, page 117.

16.4 http Server

The MI3 Comm Box with Ethernet provides a built-in http server for one or more client computers based on the http protocol within an Intranet. For getting/setting the network address through the control panel of the Comm Box, see section 8.3 <Box Setup > Page, page 50.

The web site landing page for a client is to be seen in the next figure.

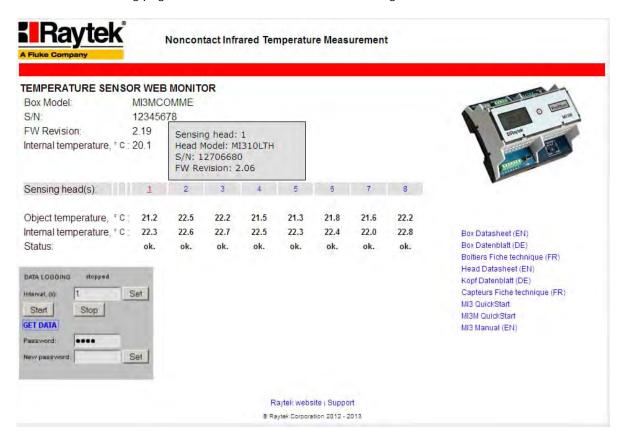


Figure 90: Landing Page for http Clients

Beside some basic information for the MI3 communication box (box model, serial number S/N, firmware revision, and current internal temperature), all sensing heads connected to the box are listed on that page. The head number is mouse sensitive and provides additional information to the head (head model, serial number S/N, firmware revision).

Each sensing head provides the current measured object temperature, the internal temperature of the head itself, and the operating status differentiated by the following:

<ok.> operating status ok

<error> communication error detected (e.g. in case of a cable break or a power loss)

<alarm> alarm condition fulfilled (current object temperature versus the alarm threshold)

The one-click access area on the right side of the page provides supporting documents which are stored on the box itself.

16.4.1 Data Logging

With the data logging function on the MI3 communication box you can record the temperature values over time directly in the internal memory of the box.

Pressing on the <Start> button triggers the data storage in accordance to the defined time interval, given in seconds. The internal memory of the box is 64 MB in size allowing a permanent data storage over 24 days at a saving interval of 1 s independent from the number of connected heads.

Pressing on the <Start> button again will initiate a new recording session by overwriting the previously stored data.

Clicking on the <Get data> button opens a dialog box to download the previously stored data as *.dat file. The data logging file comes in a standard ASCII text format accessible e.g. by means of the Windows Notepad.

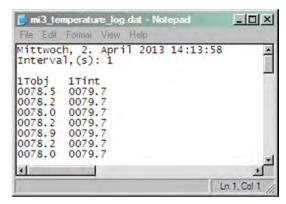


Figure 91: Example for a logging file with recorded data for the measured object temperature and the internal temperature for sensing head 1

The data logging function is password protectable to ensure data consistency while having multiple clients connected to the MI3 http server.

A valid password accepts digits only! The factory presetting is 1234.

17 Profinet

The Profinet fieldbus MI3 communication box (called fieldbus communicator) maps the object and internal temperature of all pyrometer modules on Profinet IO. In the initialization phase, the fieldbus communicator determines the physical structure of the node and creates a local process image with all pyrometers.

The diagnostics concept is based on channel specific diagnostic messages that are mapped to the respective alarms. Coding is done according to IEC 61158 Profinet IO.

Specification:

Type: Profinet IO

Conformance class: A

Real-Time class: 1 (RT) and the Real-Time class UDP

Connection: M12 or RJ45

electrically isolated

Transfer speed 100 Mbit/s full-duplex, also with auto-negotiation

Head support up to 8 pyrometer modules (MI3 or MI3100 sensing heads)

Configurable substitute value behavior for each pyrometer module in the

event of failure

Power supply: 12 to 24 V (500 mA max.)

17.1 Wiring

Details for the wiring you can find under Ethernet in section 16.1 Wiring, page 104.

17.1.1 Status LED

The status LED's are relevant for the Comm Box (DIN) only signalizing the following operating states.

yellow LED	green LED	Description
off	off	No communication
on	1 Hz	Waiting for configuration and parameters
on	on	Device is in data-exchange mode

Figure 92: Status LED's for the Comm Box (DIN)

17.2 Programming

17.2.1 I/O Device Configuration

The fieldbus communicator takes over the task of the I/O device in Profinet IO. Selecting the Pyrometer modules for the process data exchange and defining the time grid is done when configuring the I/O controller. The configuration and parameter setting of the fieldbus communicator and Pyrometer modules is based on the device's GSD file.

17.2.1.1 GSD File

Under Profinet IO, the features of the devices are described by the manufacturer in form of a GSD file and made available to the user. The GSD file for the MI3 IO device:

GSDML-V2.25-Raytek-MI3-xxxxxxxx

17.2.1.2 Configuration

The I/O device is configured in accordance with the physical arrangement of the node (slot oriented). Slot 0 contains the fieldbus communicator in its function as station substitute. It does not deliver process data itself (except its own internal temperature and trigger input state), but provides the parameters required to perform overall setting of the I/O device.

The slot 1 to maximum 8 reflects the physical arrangement of the pyrometer modules that deliver a part of the process and diagnostics data. All specific information on the relevant module is contained in the associated GSD file.

As part of a configuration with multiple pyrometer modules it is to make sure to modify the default module standard name <MI3 pyrometer> uniquely. Furthermore, it must be ensured to modify the parameter <Pyrometer number> (default value 1) uniquely as well (see section 17.2.2.2 Parameters of the Pyrometer Module, page 114).

17.2.2 Parameter Setting

Setting the parameters of both the fieldbus communicator and the connected pyrometer module is performed via "record data" sets. All modules allow the diagnostics message to be locked or released. Once all settings have been made, the I/O device signals that it is ready to send cyclic productive data.

17.2.2.1 Parameters of the Fieldbus Communicator

The parameters of the fieldbus communicator are used to set the overall settings of the Profinet IO node. Some of the setting are used in the modules as default settings and can be optionally overwritten within the module configuration.

According to the functionality, the available parameters differ between the Comm Box (metal) and the Comm Box (DIN). For the Comm Box (DIN), only the parameter <Temperature Unit> is adjustable. The table below specifies the parameters available for Comm Box (metal).

Parameter	Description	Setting
Temperature unit	Set the temperature unit	Celsius / Fahrenheit
Periphery diagnostics	The diagnostics information of all modules are not transferred to the Profinet I/O controller	message inactive
	transferred to the Profinet I/O controller	message active
Behavior on module fault	All process data are immediately reset	set process data to zero
	All process data maintain the last status	set process data to last value
Bottom temperature of output 1	Set Bottom temperature of analog output 1	03000°C /°F
Top temperature of output 1	Set Top temperature of analog output 1	03000°C /°F
Bottom temperature of output 2	Set Bottom temperature of analog output 2	03000°C /°F
Top temperature of output 2	Set Top temperature of analog output 2	03000°C /°F
Source (head) for output 1	Set number for pyrometer module	18
Source (type) for output 1	Set type of source for output 1	Internal temperature / Object temperature
Analog output 1 mode	Set output mode for output 1	TCJ
		TCK
		TCR
		TCS
		05V
		010V
		tristate (disabled)
Source (head) for output 2	Set number for pyrometer module	18
Source (type) for output 2	Set type of source for output 2	Internal temperature / Object temperature
Analog output 2 mode	Set output mode for output 2	020mA 420mA 05V 010V tristate (disabled)

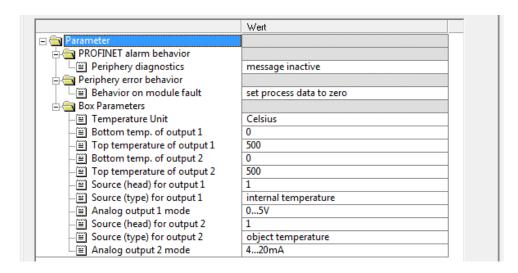


Figure 93: Parameters of the Fieldbus Communicator (exemplary for a STEP7 environment)

V/I3

17.2.2.2 Parameters of the Pyrometer Module

Certain characteristics of same pyrometer modules can be parameterized during the configuration.

Parameter	Description	Setting
Pyrometer number	Set the number of pyrometer	18
Emissivity	* 1000 (0.9 → 900)	100 1100
Transmissivity	* 1000 (1.0 → 1000)	100 1000
Averaging time	* 0.1s (1s → 10)	09990
Peak hold time	* 0.1s (1s → 10)	09990
Valley hold time	* 0.1s (1s → 10)	09990
Ambient compensation	Ambient compensation control	off / via number / via external input
Ambient temperature	in °C /°F	device measurement range
Setpoint relay	in °C /°F	device measurement range
Relay alarm output control		off / target temp. / internal temp.
Laser control		off / on / flashing
Message diagnostics alarm	The diagnostics information of pyrometer is not transferred to the Profinet I/O controller	message inactive
	is transferred to the Profinet I/O controller	message active

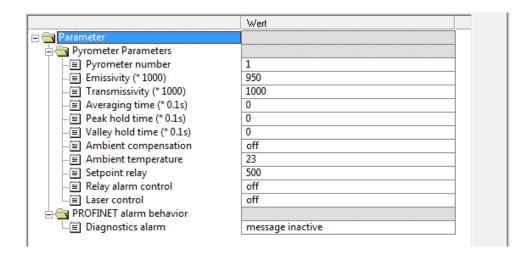


Figure 94: Parameters of the Pyrometer Module (exemplary for a STEP7 environment)

17.2.3 Input Data Structure

17.2.3.1 Input Data of Fieldbus Communicator

The input data length is 5 Byte.

Address without offset	Length	Format	Value
0	1 Byte	Bit0	Trigger state (0 – inactive, 1 – active)
1	4 Byte	Real (Big Endian, Motorola)	Internal temperature of the station

17.2.3.2 Input Data of Pyrometer Module

The input data length of pyrometer module is 8 Byte.

Address without offset	Length	Format	Value
0	4 Byte	Real (Big Endian, Motorola)	Object temperature
4	4 Byte	Real (Big Endian, Motorola)	Internal temperature

17.2.4 Output Data Structure

The pyrometer module provides output data. The output data length of pyrometer module is 3 Byte. The output data may be used to change the initialization of the device (which was set once at start-up) when the bus is in data exchange mode.

To do so the following structure is defined:

Address without offset	Length	Format	Value
0	1 Byte	Byte (Big Endian, Motorola)	Type of parameter
1, 2	2 Byte	Integer (Big Endian, Motorola)	Parameter

The <Type of parameter> gives the meaning of the following parameters (with the same format as described in section 17.2.2.2 Parameters of the Pyrometer Module, page 114):

Type of parameter	Meaning
0	ignore output data
1	emissivity
2	laser
3	background temperature (for background temperature compensation)
4	averaging time
5	peak hold time
6	valley hold time
7	set point for the relay

If <Type of parameter> is set to 0 then the output data gets ignored. So it should be set to 0 as default.

17.2.5 Diagnostics

The diagnostics information of the fieldbus communicator and the pyrometer modules can be read out anti-cyclically using standard diagnostics data sets defined in the Profinet IO specification.

Errors occurring when configuring and setting the parameters of the fieldbus communicator and the connected pyrometer modules as well as external errors are reported by the communicator via channel specific diagnostic.

In productive data exchange between the I/O controller and the fieldbus communicator, one byte IOPS process data qualifiers are available for each module providing information of the validity of the

Profinet

pyrometer module data (good/ bad). In the event of an error occurs during operation, the problem-indicator in APDU-Status is set by the communicator and a diagnostic alarm is additionally transmitted. As part of the diagnosis of the fieldbus communicator, bit 2 indicates a communication error to the pyrometer module. In this case, a diagnostic interrupt is triggered for the I/O controller.

As part of the diagnosis of the pyrometer module, bit 6 indicates a communication error to the registered pyrometer module. In this case, a <Station problem-indicator> is sent to the I/O controller.

18 ASCII Programming

This section explains the system's ASCII communication protocols. A protocol is the set of commands that defines all possible communications with the sensor. The commands are described along with their associated ASCII command characters and related message format information. Use them when writing custom programs for your applications or when communicating with your sensor using a terminal program.

18.1 Transfer Modes

There are two possible transfer modes for the digital interface:

Poll Mode: By user-interface control, a parameter will be set or requested.

Burst Mode: A pre-defined data string ("burst string") will be transferred as fast as possible, as long

as the burst mode is activated. The data will be transferred in one direction only, from

the unit to the user interface.

V=P "P" starts the Poll mode (allows to request or to set parameters)

V=B "B" starts the Burst mode (data will be transferred as fast as possible; necessary: data

string definition – "Burst string")

?X\$ gives the burst string parameters while in poll mode

Single Head System:

\$=UTIE "\$" sets the parameter combination ("burst string")

"U" unit (°C or °F)
"T" temperature value

"I" internal temperature of the sensing head

"E" emissivity

Multiple Head System:

\$=U1T1I1E2T2I2E "\$" sets the parameter combination ("burst string")

"U" unit (°C or °F)

"1T" temperature value for sensing head 1
"11" internal temperature for sensing head 1

"1E" emissivity for sensing head 1

"2T" temperature value for sensing head 2
"2I" internal temperature for sensing head 2

"2E" emissivity for sensing head 2

Return from burst mode to poll mode:

If poll mode should activate while burst mode is still active, send a character and within the following few seconds the command V=P.

18.2 Command Structure

Requesting a parameter (Poll Mode)

?E<CR> "?" is the command for "Request"

"E" is the parameter requested

<CR> (carriage return, 0Dh) is closing the request.

Remark: It is possible to close with <CR> <LF>, 0Dh, 0Ah, but not necessary.

V113

117

ASCII Programming

Setting a parameter (Poll Mode)

The parameter will be stored into the device EEPROM.

E=0.975<CR> "E" is the parameter to be set

"=" is the command for "set a parameter"

"0.975" is the value for the parameter

<CR> (carriage return, 0Dh) is closing the request

Remark: It is possible to close with <CR> <LF>, 0Dh, 0Ah, but not necessary.

Device response format:

!E0.975<CR><LF> "!" is the parameter for "Answer"

"E" is the parameter

"0.975" is the value for the parameter

<CR> <LF> (0Dh 0Ah) is closing the answer.

Error message

Syntax Error "" is the character for "Error"

18.3 Addressing

The communication boxes support up to 8 heads. To direct a command to one head among the 8 possible, it is necessary to "address" the head command. Therefore, a number between 1 and 8 is set prior to the head command.

Up to 32 communication boxes can be connected within an RS485 network. To direct a command to one box among the 32 possible, it is necessary to "address" a command. Therefore, a 3-digit number is set prior the box command.

The common command structure to address heads and boxes is described as the following:

Requesting a parameter

[BOX_ADDRESS]?[HEAD_ADDRESS]COMMAND

Setting a parameter

[BOX_ADDRESS][HEAD_ADDRESS]COMMAND=VALUE

Device response

[BOX_ADDRESS]![HEAD_ADDRESS]COMMANDVALUE

Where:

[BOX_ADDRESS] can be:

- 1. NOT PRESENT (in case of a system with one or multiple heads connected to a single box). The command acts on the single box.
- 2. 0XX (in case of a system with one or multiple heads connected to multiple boxes), where XX can be from 01 up to 32 as box address.
- 3. 000 (in case of a system with one or multiple heads connected to multiple boxes), "all-call" address for all boxes, only for setting parameters (no requests)

[HEAD_ADDRESS] can be:

- 1. NOT PRESENT (in case of a system with one or multiple heads connected to a single or multiple boxes). The command acts on the head #1.
- 2. X, where X can be from 1 up to 8 as address of a head. The command acts on the head #X.
- 3. NOT PRESENT (in case if a command acts on the box only and not on the head) e.g. ?XR (system with one box) or 002?XR (multiple boxes, box #2).

Examples

?2E	requests the emissivity for sensing head at address 2 on the single box
2E=0.975	sets the emissivity to 0.975 for sensing head at address 2 on the single box
!2E0.975	sensing head at address 2 confirms the emissivity setting on the single box
017E=0.5	Sets emissivity on head #1 on box 017
0171E=0.5	Sets emissivity on head #1 on box 017
017?E	Requests emissivity from head #1 on box 017
017?1E	Requests emissivity from head #1 on box 017

Note: A box with the address 000 is a single box and not in multidrop mode.

If a command is transferred, starting with the 3-digit number 000, all boxes (with addresses from 001 to 032) connected will get this command – without to send an answer.

000E=0.5 Sets emissivity on head #1 on all boxes, no answers

18.4 Device Information

This information is factory installed, read only.

Command	Description	Answer
		(Example)
?HI	Device name of the Head	"HIMI3LTS22"
?HN	Serial Number of the Head	"HN98123"
?XU	Device name of the Box	"XUMI3"
?XV	Serial Number of the Box	"!XV0A0027"
?XH	Maximum Temp. Range: e.g. for LT head	"!XH0600.0"
?XB	Minimum Temp. Range: e.g. for LT head	"!XB-040.0"

Table 17: Device Information

18.5 Device Setup

18.5.1 Temperature Calculation

U=C unit for the temperature value

E=0.950 Emissivity setting (Caution: according to the settings for "ES", see section

18.5.3 Emissivity Setting and Alarm Set points, page 120.)

XG=1.000 Setting for transmission

For the calculation of the temperature value, it is possible to set an offset (relative number to be added to the temperature value), and a gain value.

DG=1.0000 Gain adjustment for the temperature signal DO=0 Offset adjustment for the temperature signal

If the ambient temperature is not requested by the internal head temperature, you must set the ambient temperature values, as follows:

A=250.0 Ambient temperature (example)

AC=1 Control ambient background temp. compensation

18.5.2 Temperature Pre-Processing

The samples from the AD converter (energy values) can be processed before temperature calculation. The corresponding filter command is <FF>.

V113

110

18.5.3 Emissivity Setting and Alarm Set points

The device allows three choices for the emissivity setting and two for the alarm output setting.

ES Selection of the emissivity setting

ES=I Emissivity set by a constant number according to the "E" command

ES=E Emissivity set by a voltage on FTC1 (analog input)

ES=D Emissivity set by the entries in a table (selected by digital inputs FTC1 – FTC3) asks for the emissivity value that is actually used for temperature calculation

There are eight entries possible for emissivity setting ① and a related set point (threshold) ②. To be able to write or read these values, use the following commands:

EP=2 set pointer for table entry, e.g. to line $2 \ 3$ EV=0.600 set the emissivity value for line 2 to $0.600 \ 4$ SV=220.0 set the set point (threshold) for line 2 to $220.0 \ 5$

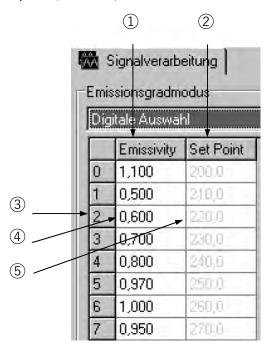


Figure 95: Table for Emissivity and Set Points

To activate these emissivity settings, you need to have the 3 external inputs (FTC) connected. According to the digital combination on the FTC wires, one of the table entries will be activated, see section 7.2 Emissivity (digital), page 43.

18.5.4 Post Processing

The following parameters can be set to determine the post processing mode. See section 8.5 Post Processing, page 52.

P=5.0	peak hold, hold time: 5 s
F=12.5	valley hold, hold time: 12.5 s
G=10.0	averaging, average time (90%): 10 s
XY=3.0	advanced peak hold, hysteresis: 3 K
XY=-2.0	advanced valley hold, hysteresis: 2 K

Advanced Peak/Valley Hold with Averaging:

C=250.0 threshold: 250°C

AA=15.0 averaging time (90%): 15 s

18.6 Dynamic Data

All temperature related information is calculated multiple times per second. To request the dynamic data, the following commands are available:

?T target temperature

?I internal temperature of the sensing head ?XJ internal temperature of the electronics housing ?Q energy value of the infrared temperature

?XT trigger set point (active/inactive) for the FTC3 input

To check for resets (e.g. power shut down), use the command XI. Notice, after a reset, the unit is new initialized.

?XI asks for the reset status !XIO no reset occurred

!XI1 a reset occurred, new initialization of the unit

XI=0 sets the reset status back to 0

18.7 Device Control

18.7.1 Output for the Target Temperature

The signal output can be set to 4 - 20 mA, 0 - 20 mA or V. If current output is activated, the output can provide a predefined current:

XO2O=4 mode to 4-20 mA for output 2

O2O=13.57 output of a constant current at 13.57 mA at output 2 O2O=60 switches back to the temperature controlled output

18.7.2 Analog Output, Scaling

According to the temperature range of the model, it is possible to set a maximum voltage/current value according to a temperature value (e.g., the maximum current 20 mA shall represent 200°C / 392°F). The same setting is possible for the minimum value.

H2O=500 the maximum current/voltage value for output 2 is set to 500°C L2O=0 the minimum current/voltage value for output 2 is set to 0°C

Remark: You cannot set this value for thermocouple output. The minimum span between the maximum / minimum settings is 20 K.

18.7.3 Alarm Output

The alarm output (see section 6.4 Alarm Output RELAY, page 40) can be driven by two triggers:

- object temperature
- head ambient temperature

KH=0 no alarm control

KH=1 object temperature drives alarm control

KH=2 head ambient temperature drives alarm control

KB=0 relay contacts permanently open

ASCII Programming

KB=1 relay contacts permanently closed KB=2 relay contacts normally open KB=3 relay contacts normally closed

XS=125.3 threshold setting to 125.3°C (if U=C is set)

18.7.4 Factory default values

It is possible to reset the unit to the default values.

XF factory default values will be set

18.7.5 Lock Mode

The access to the unit is possible via serial interface (software) and via the direct user input (mode buttons, LCD display). It is possible to lock the button. This allows the change of parameters to the unit only via software.

J=L direct user access to button denied

J=U unlocking the button

18.7.6 Mode Setting for the Digital Input FTC3

The digital input FTC3 (see section 7.4 Trigger/Hold, page 45.) can be used as follows:

XN=T FTC3 as trigger

XN=H FTC3 with hold function

18.7.7 Ambient Background Temperature Compensation

To compensate the ambient background temperature, the following modes are available:

AC=0 no compensation

AC=1 compensation with a constant temperature value set with command A.

AC=2 compensation with an external voltage signal at the analog input FTC2 (0 V - 5V

corresponds to low end and high end of temperature range). Current ambient

temperature is readable with command A.

Note: The mode AC = 2 does not function in case of setting the command ES = D!

For more information regarding the ambient background temperature compensation feature, see section 7.3 Background Temperature Compensation, page 43.

18.8 Command Set

P ... Poll, B ... Burst, S ... Set, N ... Notification

n ... head number, v ... value, X ... uppercase letter

Description	Char	Format	Р	В	S	N	Legal Values	Factory default	<u>H</u> ead / <u>B</u> ox
Poll parameter	?	?X					?T		
Set parameter	=	X=					BR=115200		
Error message	*						*Syntax error		
Acknowledge message	į						!BR115200		
Burst string format	\$?\$ or \$=nT	√		√			TXLXIT	

Description	Char	Format	Р	В	S	N	Legal Values	Factory default	<u>H</u> ead / <u>B</u> ox
Ambient background temp. compensation	A	nA float					°C/°F	23°C	Н
Advanced hold with average	AA	nAA float	V	V	√		0 – 999.0 s	000.0s	Н
Control ambient background temp. compensation	AC	nAC			$\sqrt{}$		0 – sensor temp. 1 – via number 2 – via ext. input	0	Н
Baud rate RS485	BR	BR integer	1		V		9600, 19200 38400, 57600, 115200	9600	В
Burst speed (if V=B)	BS	BS					5 – 1000 ms	32	В
Advanced hold threshold	С	nC	V		\checkmark			300 °C/°F	Н
Currently calculated emissivity	CE	nCE	V				0.1 - 1.1		Н
Cali Certification Date, Time	CFDT	nCFDT 32int 32int					CFDT=yyyymmdd hhmmss		В
Cali Certification Low Temp	CFLT	nCFLT float float float float float float	√ 				CFLT=23.0 SourceTemp1 MeasureTemp1 SourceTemp2 MeasureTemp2 SourceTemp3 MeasureTemp3		В
Cali Certification High Temp	CFHT	nCFHT float float float float	√				CFHT=80.0 SourceTemp1 MeasureTemp1 SourceTemp2 MeasureTemp2		В
Communication module	СМ	?CM	V				0 – no module 1 – RS485 2 – Profibus 3 – Modbus 4 – reserved 5 – Ethernet 6 – Profinet		В
Current calculation setpoint/ relay function	CS	nCS	1				°C/°F		В
Sensor Gain	DG	nDG float	V				0.81.2	1.0	Н
Sensor Offset	DO	nDO float	1				-200°C+200°C	0°C	Н
Delete Sensor	DH	nDH							В
Box special	DS	string	V		√		e.g. !DSRAY (read only)	Set at production	В
Emissivity internal	E	nE float	1	V	V		0.1 - 1.1	0.950	Н

Description	Char	Format	Р	В	S	N	Legal Values	Factory default	<u>H</u> ead / <u>B</u> ox
Box Status Code	EC	EC 16 bit hex					hex value of Status Code ¹		В
External module	EM	?EM	V				0 - no module 2 - 2 channels 4 - 4 channels (analog outputs)		В
Presel. Emissivity Pointer	EP	nEP integer	V				0 - 7	0	Н
Emissivity Source	ES	nES integer	V		√		I = Emissivity from Internal (by command) E = Emissivity from External analog input (0V - 5V) D = digital selected FTC1-3	1	Н
Presel. Emissivity Value	EV	nEV float	V		V		0.1 - 1.1		Н
Valley hold time ²	F	nF float	$\sqrt{}$	V	V	V	0.0 - 998.9 s $(999 = \infty)$	0.0 s	Н
Flicker Filter	FF	nFF integer					032768	0 (LT, G5) 3000 (1M, 2M)	Н
Average time ³	G	nG float	1		V	V	0 – 999.0 s	0.0 s	Н
Head Address	НА	nHA	\checkmark				1 – 9		В
Connected heads	НС	string	$\sqrt{}$				e.g. !HC – no heads !HC1 2 3 7 8		В
Registered heads	HCR	string	V		1		e.g. !HCR – no heads !HCR1 2 3 7 8 HCR=0 –> new registration		В
Head Status Code	HEC	nHEC 16 bit hex	V				hex value of Status Code ⁴		Н

```
1 Box Status Codes (read only):
```

Self-test error BITO
Box ambient temperature out of range BIT1
Sensing head communication error BIT2
Parameter error BIT3
Register write error BIT4
Analog module error BIT5
Profinet ready BIT6

Temperature unit $BITO \ // O = ^{\circ}C, 1 = ^{\circ}F$ Object temperature out of range Ambient temperature out of range BIT1 $\ // 1 =$ out of range Parameter error for a command BIT3 $\ // 1 =$ error Register write error BIT4 $\ // 1 =$ error Self-test error BIT5 $\ // 1 =$ error

Head not connected BIT6 (ab Rev. 2.20, not for Profibus communication boxes)

Background temperature compensation BIT7 // 0 = off, 1 = on

² setting average / peak / valley / advanced hold cancels all other hold modes

³ setting average / peak / valley / advanced hold cancels all other hold modes

⁴ Head Status Codes (read only):

Description	Char	Format	Р	В	S	N	Legal Values	Factory default	<u>H</u> ead / Box
Head identification	HI	?nHI string	V		(√)		e.g. !7HIMIXLTS22	set at production	Н
Top temperature value of output 1	H1O (H) ¹	float	1			√	H1O= -40.0 or H= -40.0	500°C	В
Top temperature value of output 2	H2O	float				√	H2O= -40.0	500°C	В
Top temperature value of output 3 ²	H3O	float	7			√	H3O= -40.0	500°C	
Top temperature value of output 43	H4O	float	1		√	√	H4O= -40.0	500°C	
Laser Control ⁴	HL	nHL integer	1			√	0=off, 1=on, 2=flash, 3=external	0	Н
Head serial number	HN	?nHN integer	1		V		e.g. !nHN98123	set at production	Н
Head special	HS	?nHS string	1		V		e.g. !99HSRAY	Set at production	Н
Head Firmware Revision	HV	?nHV					e.g. 1.01	Set in FW	Н
Restore Head Factory defaults	HXF	nHXF	1		√				Н
Head ambient	I	?nl float	1	√			answer !nl=0099.9		Н
Switch panel lock	J	Х	1		V	V	L = locked U = unlocked	unlocked	В
Relay alarm output control depreciated for MI3 (use the commands KB and KH instead of)	K	K integer	√		√		0 = off 1 = on 2 = Target norm. open 3 = Target norm. closed 4 = Intern norm. open 5 = Intern norm. closed	2	Н
Relay alarm output control	КВ	KB integer	V		V		0 = off 1 = on 2 = norm. open 3 = norm. closed	2	В
Relay alarm output control	KH	nKH integer	√		V		0 = off 1 = target temp. 2 = head ambient	1	Н
Bottom temperature value of output 1	L1O (L) ⁵	float	1		√	1	L1O= -40.0 or L= -40.0	0°C	В
Bottom temperature value of output 2	L20	float	1		√	V	L2O= -40.0	0°C	В
Bottom temperature value of output 36	L3O	float	1		√	V	L3O= -40.0	0°C	

¹ for MI3COMM only

² for MI3MCOMMA only ³ for MI3MCOMMA only

⁴ for MI3100 heads only

⁵ for MI3COMM only

⁶ for MI3MCOMMA only

Description	Char	Format	Р	В	S	N	Legal Values	Factory default	<u>H</u> ead / <u>B</u> ox
Bottom temperature value of output 4 ¹	L40	float	V		1		L4O= -40.0	0°C	
Output 1 source	O10 (O) ²	O1O=v, or nT, or nI	$\sqrt{}$		√		v – float value n – head number if v = 60 – controlled by head 1(O1O=1T)	010=11	В
Output 2 source	020	O2O=v, or nT, or nI	V		√		v – float value n – head number if v = 60 – controlled by head 1(O2O=1I)		В
Output 3 source ³	030	O3O=v, or nT, or nI	V		V		v – float value n – head number if v = 60 – controlled by head 1 (O3O=1I)		
Output 4 source ⁴	040	O4O=v, or nT, or nI	V		V		v – float value n – head number if v = 60 – controlled by head 1(O4O=1I)	O4O=1I	
Peak hold time ⁵	Р	nP float	√	√	V	V	0.0 - 998.9s $(999 = \infty)$	0.0s	Н
Power / AD value	Q	?nQ	$\sqrt{}$						Н
Presel. Setpoint	SV	nSV float	V					500°C	Н
Target temperature	Т	?nT float	√	√			answer !nT=0099.9		Н
Get Analog Input 1	TV1I	?TV1I	$\sqrt{}$				0 – 5V		В
Get Analog Input 2	TV2I	?TV2I	V				0 – 5V		В
Temperature Unit	U	Х					C/F	С	B/H
Poll / Burst mode	V	V=P	$\sqrt{}$				P=poll B=burst	poll mode	В
Command counter	W	?W	V	√			1 – 0x7FFF (repeat) Set to 1 when V=P	1	В
Burst string contents	X\$?X\$	$\sqrt{}$						В
Multidrop Address	XA	0nn	V		√		000 – 032 (000> single unit mode)	000	В
Profibus / Modbus Address	XAS	n	V		V	V	0 – 125 (Profibus) 1 – 247(Modbus)	0 (Profibus) 1(Modbus)	В
Device Bottom range limit	ХВ	?nXB float	V		V		answer !nXB=10.0		Н
Restore Box Factory defaults	XF				V			except address	В
Transmission	XG	float	$\sqrt{}$				0.1 – 1.0	1.0	Н

¹ for MI3MCOMMA only

² for MI3COMM only ³ for MI3MCOMMA only

⁴ for MI3MCOMMA only

⁵ setting average / peak / valley / advanced hold cancels all other hold modes

Description	Char	Format	Р	В	S	N	Legal Values	Factory default	<u>H</u> ead / Box
Device High range limit	ХН	?nXH float	√				read only		Н
Sensor initialization	XI		V				1 after reset 0 if XI=0	1	В
Box Temperature	XJ	float					(°C/°F)		В
FTC3 trigger/hold	XN	nXN					T = trigger, H = hold	Т	Н
analog Output 1 mode	XO10 (XO) ¹	XO1O=v (XO=v)	√		~		0 – 020 mA ² 4 – 420 mA 5 – TCJ ³ 6 – TCK 7– TCR 8 – TCS 9 – 05 V 10 – 010 V 99 – disable (tristate)	XO1O=9 for communication box (metal) XO1O=99 for communication box 6TE, analog	В
analog Output 2 mode	XO2O	XO2O=v	V		√		0 - 020 mA 4 - 420 mA 9 - 05 V 10 - 010 V 99 - disable (tristate)	XO2O=4 for communication box (metal) XO1O=99 for communication box 6TE, analog	В
analog Output 3 mode ⁴	XO3O	XO3O=v	1		V		0 – 020 mA 4 – 420 mA 9 – 05 V 10 – 010 V 99 – disable (tristate)	XO3O=99 for communication box 6TE, analog	В
analog Output 4 mode ⁵	XO4O	XO4O=v	V		V		0 - 020 mA 4 - 420 mA 9 - 05 V 10 - 010 V 99 - disable (tristate)	XO4O=99 for communication box 6TE, analog	В
Box Firmware Revision	XR	?XR					e.g. 1.01	Set in FW	В
Setpoint relay function	XS	nXS float	1		V		°C/°F	500°C	Н
Trigger	XT	?XT					0 = inactive, 1 = active	0	В
Unit identification	XU	?XU					e.g. !XUMI3COMM	set at production	
Serial number	XV	?XV					e.g. !XV98123	set at production	В
Advanced hold hysterese	XY	nnnn	1		V				Н
Timer counter (if V=B) Indicates the Burst speed 6	Z	\$=Z	-	√			0 – 9999 ms (repeat)		В

¹ for MI3COMM only

² Mode 0 and 4 for MI3MCOMMA only

³ Mode 5 to 8 for MI3COMM only

⁴ for MI3MCOMMA only

⁵ for MI3MCOMMA only

⁶ Burst mode only

18.8.1 ASCII Commands for Ethernet and Profinet

Description	Char	Format	Р	В	S	N	Legal Values	Factory default	<u>H</u> ead / <u>B</u> ox	
IP address	IP		√		V		192.xxx.xxx.xxx	192.168.42.130 (Ethernet) 0.0.0.0 (Profinet)	В	2.19
Net Mask	NM		√		~		255.255.255.0	255.255.255.0 (Ethernet) 0.0.0.0 (Profinet)	В	2.19
Gateway	GW		√		~		192.xxx.xxx	192.x.x.x (Ethernet) 0.0.0.0 (Profinet)	В	2.19
MAC address (read only)	MAC		√				001d8d 1xxxxx	00:1d:8d:10:00:14 (Ethernet) 00:1d:8d:10:00:1f (Profinet)	В	2.19
PORT address (Ethernet only)	PORT						0 - 65535 (TCP/IP and UDP)	6363	В	FW 1.06
DHCP on/off (Ethernet only)	IPU		V		√		0 – off 1 - on	0	В	2.19
Data logging on/off (Ethernet only)	DL		V		√		0 – off 1 - on	0	В	2.19
Data logging interval (Ethernet only)	DLI		V		V		1 – 2097120 s	1s	В	2.19
Get Ethernet FW Version	ETV		V				String, 4 char	1.00	В	2.19
Reset Ethernet module	RSE		V						В	2.19
TCP/IP time out interval	TTI	TTI=0	V		1		1240 s 0 infinitely	120	В	2.20
Web Server on/off ¹	WS	?WS	√		V		0 - off, 1 - on	1	В	2.20

Table 18: Command Set

122

¹ WS is OFF while Burst mode is ON and Ethernet communication is running

19 Appendix

19.1 Determination of Emissivity

Emissivity is a measure of an object's ability to absorb and emit infrared energy. It can have a value between 0 and 1.0. For example a mirror has an emissivity of < 0.1, while the so-called "Blackbody" reaches an emissivity value of 1.0. If a higher than actual emissivity value is set, the output will read low, provided the target temperature is above its ambient temperature. For example, if you have set 0.95 and the actual emissivity is 0.9, the temperature reading will be lower than the true temperature. An object's emissivity can be determined by one of the following methods:

- 1. Determine the actual temperature of the material using an RTD (PT100), a thermocouple, or any other suitable contact temperature method. Next, measure the object's temperature and adjust emissivity setting until the correct temperature value is reached. This is the correct emissivity for the measured material.
- 2. For relatively low temperatures (up to 260°C / 500°F) place a plastic sticker (e.g. XXXRPMACED) on the object to be measured. This sticker should be large enough to cover the target spot. Next, measure the sticker's temperature using an emissivity setting of 0.95. Finally, measure the temperature of an adjacent area on the object and adjust the emissivity setting until the same temperature is reached. This is the correct emissivity for the measured material.
- 3. If possible, apply flat black paint to a portion of the surface of the object. The emissivity of the paint is 0.95. Next, measure the temperature of the painted area using an emissivity setting of 0.95. Finally, measure the temperature of an adjacent area on the object and adjust the emissivity until the same temperature is reached. This is the correct emissivity for the measured material.

19.2 Typical Emissivity Values

The following table provides a brief reference guide for determining emissivity and can be used when one of the above methods is not practical. Emissivity values shown in the table are only approximate, since several parameters may affect the emissivity of a material. These include the following:

- Temperature
- Angle of measurement
- Geometry (plane, concave, convex)
- Thickness
- Surface quality (polished, rough, oxidized, sandblasted)
- Spectral range of measurement
- Transmission (e.g. thin films plastics)

To optimize surface temperature measurements, consider the following guidelines:

- Determine the object's emissivity using the instrument which is also to be used for temperature measurements.
- Avoid reflections by shielding the object from surrounding temperature sources.
- For higher temperature objects, use instruments with the shortest wavelength possible.
- For translucent materials such as plastic foils or glass, assure that the background is uniform and lower in temperature than the object.
- Mount the instrument perpendicular to the surface, if possible. In all cases, do not exceed angles more than 45° from incidence.

19.3 ATEX Certificate of Conformity for Sensing Heads

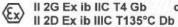
EKRA DI A D DEKE DEKRA DI IA D DEK RA D DE DEKRA DI ZEA D DI DEKRA DI DEKRA DI DEKRA DI

DEKRA

PERRA DERRIA DER

Translation

EC-Type Examination Certificate


- (2) Equipment and protective systems intended for use in potentially explosive atmospheres - Directive 94/9/EC
- (3) No. of EC-Type Examination Certificate: BVS 12 ATEX E 140
- (4) Equipment: IR-sensors of the following types: MI3: xxxMI3xxxISx/ MI330: xxxMI330xxxISx/MI3100: xxxMI3100xxxISx/

MI3-LTH: xxxMI3xxLTHISx

- (5) Manufacturer: Raytek GmbH
- (6) Address: Blankenburger Straße 135, 13127 Berlin, Germany
- (7) The design and construction of this equipment and any acceptable variation thereto are specified in the appendix to this type examination certificate.
- (8) The certification body of DEKRA EXAM GmbH, notified body no. 0158 in accordance with Article 9 of the Directive 94/9/EC of the European Parliament and the Council of 23 March 1994, certifies that this equipment has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of equipment and protective systems intended for use in potentially explosive atmospheres, given in Annex II to the Directive. The examination and test results are recorded in the test and assessment report BVS PP 12:2205 EG.
- (9) The Essential Health and Safety Requirements are assured by compliance with:

EN 60079-0:2012 General requirements EN 60079-11:2012 Intrinsic Safety 'i'

- (10) If the sign "X" is placed after the certificate number, it indicates that the equipment is subject to special conditions for safe use specified in the appendix to this certificate.
- (11) This EC-Type Examination Certificate relates only to the design, examination and tests of the specified equipment in accordance to Directive 94/9/EC.
 Further requirements of the Directive apply to the manufacturing process and supply of this equipment. These are not covered by this certificate.
- (12) The marking of the equipment shall include the following:

or II 2G Ex ib IIC T4/T3 Gb
II 2D Ex ib IIIC T135°C / 185°C Db

DEKRA EXAM GmbH Bochum, dated 2012-12-18

signed: Simanski signed: Dr. Eickhoff

Certification body Special services unit

Page 1 of 3 to BVS 12 ATEX E 140

This certificate may only be reproduced in its entirety and without change.

DEKRA EXAM GmbH, Dinnendahlstrasse 9, 44809 Bochum, Germany Phone +49,234,3596-105, Fax +49,234,3596-110 email: zs-exam@dekra.com

- (13) Appendix to
- (14) EC-Type Examination Certificate BVS 12 ATEX E 140
- (15) 15.1 Subject and type

IR-sensors of the following types: xxxMI3xxxISx xxxMI330xxxISx xxxMI3100xxxISx xxxMI3xxLTHISx

In the full-text marking, x shall be replaced by letters or numbers indicating non-ex relevant variants.

15.2 Description

The sensors of types xxxMl3xxxlSx, xxxMl330xxxlSx, xxxMl3100xxxlSx and xxxMl3xxLTHISx are used for temperature measurement. They are intended for use in explosive atmospheres (EPL Gb or Db).

The sensors consist of a cylindrical enclosure made of stainless steel; the enclosure contains printed circuit boards onto which electronic components are mounted.

One end of the enclosure is equipped with a cable gland for the permanently connected intrinsically safe supply and data circuit; the other end is closed with the sensor optics.

The several types differ in their spectral measuring range, the passive optical measuring device and – depending on the type – the additional adjusting aid provided as an active, visible laser beam.

The variant xxxMI3xxLTHISx is designed for use in high ambient temperature ranges and is thus equipped with a suitable optical measuring device (for temperature class T4: up to 120 °C ambient temperature; for temperature class: T3 up to 180 °C ambient temperature). The electronic unit is provided on a printed circuit board accommodated in a detached metallic enclosure.

15.3 Parameters

75575777777777	97/1///////////////////////////////////
////U _i //////	//////////////7/1/V/////
////Ac//////	264 mA
	470 mW
////U _n /////	2.5 V
////ln//////	10 mA
Pn	25 mW
C _i	10 µF
L,	10 nH
Ui	7.1 V
	264 mA
P _i	470 mW
	2.5 V
	70 mA
Pn	175 mW
C	10 µF
Li	10 nH
U	7.1 V
I ₁	264 mA
P _i	470 mW
	2.5 V
l _n	15 mA
	40 mW
C	10 µF
t.	10 nH

This certificate may only be reproduced in its entirety and without change.

DEKRA EXAM GmbH, Dinnendahlstrasse 9, 44809 Bochum, Germany Phone +49.234.3696-105, Fax +49 234.3696-110 email: zs-exam@dekra.com

1534	Data	interface	(all	SANSOF	types)

Voltage	Ui	7.1 V
Current	l _i	21.7 mA
Power	Pi	38.6 mW
Nominal voltage	Un	3.3 V
Current	I _n	3 mA
Power	Pi	10 mW
Maximum internal capacitance	Ci	10 pF
Maximum internal inductance	L	10 nH

- 15.3.5 Ambient temperature range
- 15.3.5.1 Group II application

Type xxxMI3xxLTHISx:

Measuring optics	-10 °C ≤ T _{amb} ≤ +180 °C
Detached electronic unit	-10 °C ≤ T _{amb} ≤ +120 °C
Type xxxMI3100xxxISx:	$0 ^{\circ}\text{C} \le T_{\text{amb}} \le +120 ^{\circ}\text{C}$
All other variants:	-10 °C ≤ T _{amb} ≤ +120 °C

15.3.5.2 Group III application

Type xxxMI3xxLTHISx:

Measuring optics	-10 °C ≤ T _{amb} ≤ +180 °C
Detached electronic unit	-10 °C ≤ T _{amb} ≤ +120 °C
Type xxxMI3100xxxISx:	0 °C ≤ T _{amb} ≤ +120 °C
All other variants:	-10 °C ≤ T _{amb} ≤ +120 °C

(16) Test and assessment report

BVS PP 12.2205 EG, as of 2012-12-18

(17) Special conditions for safe use

Not relevant

We confirm the correctness of the translation from the German original. In the case of arbitration only the German wording shall be valid and binding.

DEKRA EXAM GmbH 44809 Bochum, 05.02.2015 BVS-Scha/Ar E 4419/15

Certification body

Special services unit

Page 3 of 3 to BVS 12 ATEX E 140
This certificate may only be reproduced in its entirety and without change.
DEKRA EXAM GmbH, Dinnendahistrasse 9, 44809 Bochum, Germany. Phone +49.234.3596-105, Fax +49.234.3596-110 email: zs-exam@dekra.com

19.4 ATEX Certificate of Conformity for Ex Power Supply

EKRA DI A DIRKE DEKRA DI RA DIDE DEKRA DI DEKRA DI DEKRA DI DEKRA DI STARA DI STARA DI STARA DI

JEKRA

DENRIA DE LENGA DE LE

Translation

(1) EC-Type Examination Certificate

- Equipment and protective systems intended for use in potentially explosive atmospheres - Directive 94/9/EC
- (3) No. of EC-Type Examination Certificate: BVS 14 ATEX E 168
- (4) Equipment: Ex-Power Supply type xxxMI3ACIS*
- (5) Manufacturer: Raytek GmbH
- (6) Address: Blankenburger Straße 135, 13127 Berlin, Germany
- (7) The design and construction of this equipment and any acceptable variation thereto are specified in the appendix to this type examination certificate.
- (8) The certification body of DEKRA EXAM GmbH, notified body no. 0158 in accordance with Article 9 of the Directive 94/9/EC of the European Parliament and the Council of 23 March 1994, certifies that this equipment has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of equipment and protective systems intended for use in potentially explosive atmospheres, given in Annex II to the Directive. The examination and test results are recorded in the Test and Assessment Report BVS PP 14.2244 EG.
- (9) The Essential Health and Safety Requirements are assured by compliance with:

EN 60079-0:2012 General requirements EN 60079-11:2012 Intrinsic Safety "i"

- (10) If the sign "X" is placed after the certificate number, it indicates that the equipment is subject to special conditions for safe use specified in the appendix to this certificate.
- (11) This EC-Type Examination Certificate relates only to the design, examination and tests of the specified equipment in accordance to Directive 94/9/EC. Further requirements of the Directive apply to the manufacturing process and supply of this equipment. These are not covered by this certificate.
- (12) The marking of the equipment shall include the following

II (2)G [Ex ib Gb] IIB II (2)D [Ex ib Db] IIIC

DEKRA EXAM GmbH Bochum, dated 2014-12-02

Signed: Dr. Eickhoff

Signed: Dr. Wittler

Certification body

Special services unit

Page 1 of 3 to BVS 14 ATEX E 168

This certificate may only be reproduced in its entirety and without change.

DEKRA EXAM GmbH Dinnendahlstrasse 9 44809 Bochum Phone +49.234.3696-105 Fax +49.234.3696-110 zs-exam@dekra.com

115 / 230 V

253

AC

U. DC 7.1 V

- (13) Appendix to
- **EC-Type Examination Certificate BVS 14 ATEX E 168**
- (15) 15.1 Subject and type

Ex-Power Supply type xxxMI3ACIS*

In the full designation, 'x' will be replaced by letters and numbers specifying not Ex-relevant details of variants and the '*' by cable length information.

15.2 Description

The Ex-Power Supply type xxxMI3ACIS* is designed as associated apparatus, designated for installation in the safe area and is used as intrinsically safe power supply of special intrinsically safe probes. The probes itself are subject to other ATEX certificates.

Electronic components of the power supply are located on a printed circuit board mounted in a light-

The side walls of the housing are fitted with cable glands for the non-IS circuits (power supply and I2C interface) and for up to two IS supply and data circuits intended for interconnection of IS probes.

15.3.1 Non-intrinsically safe circuits

Rated voltage

15.3.1.1 Power supply

AC 253 15.3.1.2 I2C data interface Rated voltage DC

Intrinsically safe supply- and I2C data circuit, level of protection Ex ib IIB

(4-wire configuration)

Terminal block sensor_1, terminal 1 (+), terminal 4 (-); sensor_2, terminal 1 (+), terminal 4 (-)

Power supply

Current Power	I _o P _o	263 m/ 467 m/	DON'T FULL I
I ² C data interface		///////////////////////////////////////	
Current Power Max. external capacitance Max. external inductance	lo Po Co Lo	20 m/ 36 m/ 261.4 µF 1.77 ml	W) ²
) ¹ each sensor connection) ² each data wire and sum of all four data wires			

Common GND for both sensor circuits

15.3.3 Ambient temperature range -10 °C ≤ Ta ≤ +65 °C

(16) Test and Assessment Report

BVS PP 14.2244 EG as of 2014-12-02

(17) Special conditions for safe use

None

Page 2 of 3 to BVS 14 ATEX E 168

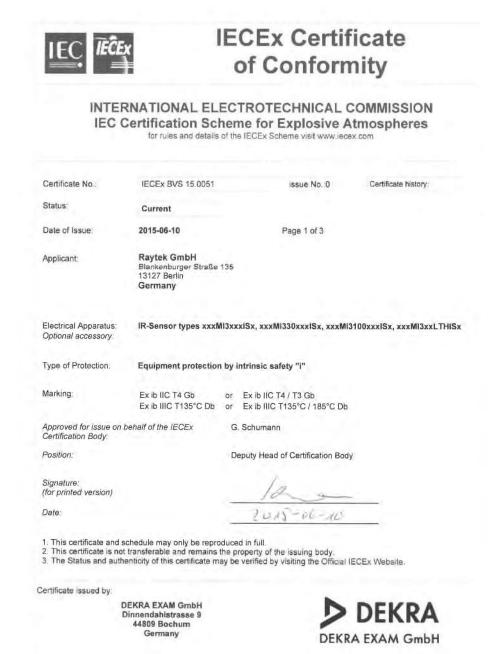
This certificate may only be reproduced in its entirety and without change.

DEKRA EXAM GmbH Dinnendahistrasse 9 44809 Bochum Phone +49.234.3696-105 Fax +49.234.3696-110 zs-exam@dekra.com

We confirm the correctness of the translation from the German original. In the case of arbitration only the German wording shall be valid and binding.

DEKRA EXAM GmbH 44809 Bochum, 2014-12-02 BVS-Scha/Ma A20120189

Certification body


Special services uni

Page 3 of 3 to BVS 14 ATEX E 168

This certificate may only be reproduced in its entirety and without change.

DEKRA EXAM GmbH Dinnendahlstrasse 9 44809 Bochum Phone +49.234.3696-105 Fax +49.234.3696-110 zs-exam@dekra.com

19.5 IECEx Certificate of Conformity for Sensing Heads

IECEx Certificate of Conformity

Certificate No.:

IECEX BVS 15,0051

Date of Issue:

2015-06-10

Issue No.: 0

Page 2 of 3

Manufacturer:

Raytek GmbH Blankenburger Straße 135 13127 Berlin

Additional Manufacturing location

(s)

This certificate is issued as verification that a sample(s), representative of production, was assessed and tested and found to comply with the IEC Standard list below and that the manufacturer's quality system, relating to the Ex products covered by this certificate, was assessed and found to comply with the IECEx Quality system requirements. This certificate is granted subject to the conditions as set out in IECEx Scheme Rules, IECEx 02 and Operational Documents as amended.

STANDARDS

The electrical apparatus and any acceptable variations to it specified in the schedule of this certificate and the identified documents, was found to comply with the following standards:

IEC 60079-0: 2011

Explosive atmospheres - Part 0: General requirements

Edition: 6.0 IEC 60079-11 : 2011

Explosive atmospheres - Part 11: Equipment protection by intrinsic safety "i"

Edition: 6.0

This Certificate does not indicate compliance with electrical safety and performance requirements other than those expressly included in the Standards listed above.

TEST & ASSESSMENT REPORTS:

A sample(s) of the equipment listed has successfully met the examination and test requirements as recorded in

Test Report:

DE/BVS/ExTR15,0043/00

Quality Assessment Report:

DE/EPS/QAR15.0003/00

IECEx Certificate of Conformity

IECEx BVS 15.0051

Date of Issue:

2015-06-10

Issue No.: 0

Page 3 of 3

Schedule

EQUIPMENT:

Equipment and systems covered by this certificate are as follows:

IR-Sensor types xxxMi3xxxiSx, xxxMi330xxxiSx, xxxMi3100xxxiSx, and xxxMi3xxLTHiSx In the full designation, 'x' is replaced by numbers or letters specifying non-Ex-relevant details of construction

The sensors of type series xxxMI3xxxISx, xxxMI330xxxISx, xxxMI3100xxxISx and xxxMI3xxLTHISx are used for temperature measurement. They are intended for use in explosive atmospheres (EPL Gb or Db). The sensors consists of a cylindrical enclosure made of stainless steel; the enclosure contains printed circuit boards

fitted with electronic components.

One end of the enclosure is equipped with a cable gland for the permanently connected intrinsically safe supply and data circuit; the other end is closed with the sensor optics.

The several types differ in their spectral measuring range, the passive optical measuring device and -depending on the type - the additional adjusting aid provided as an active, visible laser beam.

The variant xxxMI3xxLTHISx is designed for use in high ambient temperature ranges and is thus equipped with a

suitable optical measuring device (for temperature class T4: up to 120 °C ambient temperature, for temperature class T3: up to 180 °C ambient temperature). The electronic unit is provided on a printed circuit board accommodated in a detached metallic enclosure.

Rating

See Annex

CONDITIONS OF CERTIFICATION: NO

Annex: BVS_15_0051_Raytek_Annex.pdf

IECEx Certificate DEKRA of Conformity

Certificate No.:

IECEx BVS 15.0051

Annex Page 1 of 1

Rating

1. Electrical parameters

Parameter		Power sup	ply sensor t	type series	Data interface
		MI3, MI330	MI3100	MI3LTHIS	(all sensor types)
Voltage	Ui	7.1 V	7.1 V	7.1 V	7.1 V
Current	1	264 mA	264 mA	264 mA	21.7 mA
Power	Pi	470 mW	470 mW	470 mW	38.6 mW
Rated voltage	Un	2.5 V	2.5 V	2.5 V	3.3 V
Rated current	In	10 mA	70 mA	15 mA	3 mA
Rated power	Pn	25 mW	175 mW	40 mW	10 mW
Effective internal capacitance	Ci	10 µF	10 µF	10 μF	10 pF
Effective internal inductance	Li	10 nH	10 nH	10 nH	10 nH

2. Ambient temperature range

IR-Sensor type	xxxMl3xxxlSx; xxxMl330xxxlSx	xxxMi3100xxxlSx	xxxMI3xxLTHISx:	
Optical assembly N/A Remote electronic assembly N/A		N/A	-10 °C ≤ T _a ≤ +180 °C	
		N/A	-10 °C ≤ T _a ≤ +120 °C	
Complete device	-10 °C ≤ T _a ≤ +120 °C	0 °C ≤ T _a ≤ +120 °C	N/A	

The ambient temperature ranges apply for EPL Gb (Group II) application as well as for EPL Db (Group III) application.

19.6 IECEx Certificate of Conformity for Ex Power Supply

IECEx Certificate of Conformity

INTERNATIONAL ELECTROTECHNICAL COMMISSION IEC Certification Scheme for Explosive Atmospheres

for rules and details of the IECEx Scheme visit www.iecex.com

IECEx BVS 15,0057 issue No.:0 Certificate history Certificate No.: Status: Current Date of Issue: 2015-06-24 Page 1 of 4 Raytek GmbH Applicant: Blankenburger Straße 135 13127 Berlin Germany Electrical Apparatus: Ex-Power Supply type series xxxMl3ACIS*, 115Ml3ACIS* / 230Ml3ACIS* / RAYMl3ACIS Optional accessory: Equipment protection by intrinsic safety "i", Equipment protection by type of protection Type of Protection: Ex nA [ib Gb] IIB T4 Gc; [Ex ib Db] IIIC; [Ex ib Gb] IIB; [Ex ib Db] IIIC Marking Approved for issue on behalf of the IECEx Certification Body: H.-Ch. Simanski Head of Certification Body Signature: (for printed version) Date This certificate and schedule may only be reproduced in full.
 This certificate is not transferable and remains the property of the issuing body.
 The Status and authenticity of this certificate may be verified by visiting the Official IECEx Website. Certificate issued by:

> DEKRA EXAM GmbH Dinnendahlstrasse 9 44809 Bochum Germany

IECEx Certificate of Conformity

Certificate No.:

IECEx BVS 15.0057

Date of Issue:

2015-06-24

Issue No.: 0

Page 2 of 4

Manufacturer:

Raytek GmbH Blankenburger Straße 135 13127 Berlin Germany

Additional Manufacturing location

This certificate is issued as verification that a sample(s), representative of production, was assessed and tested and found to comply with the IEC Standard list below and that the manufacturer's quality system, relating to the Ex products covered by this certificate, was assessed and found to comply with the IECEX Quality system requirements. This certificate is granted subject to the conditions as set out in IECEX Scheme Rules, IECEX 02 and Operational Documents

The electrical apparatus and any acceptable variations to it specified in the schedule of this certificate and the identified documents, was found to comply with the following standards:

IEC 60079-0 : 2011

Explosive atmospheres - Part 0: General requirements

Edition: 6.0 IEC 60079-11: 2011

Explosive atmospheres - Part 11: Equipment protection by intrinsic safety "i"

IEC 60079-15: 2010

Explosive atmospheres - Part 15: Equipment protection by type of protection "n"

Edition: 4

This Certificate does not indicate compliance with electrical safety and performance requirements other than those expressly included in the Standards listed above.

TEST & ASSESSMENT REPORTS:

A sample(s) of the equipment listed has successfully met the examination and test requirements as recorded in

Test Report:

DE/BVS/ExTR15.0048/00

Quality Assessment Report:

DE/EPS/QAR15.0003/00

IECEx Certificate of Conformity

Certificate No.:

IECEx BVS 15.0057

Date of Issue:

2015-06-24

Issue No.: 0

Page 3 of 4

Schedule

EQUIPMENT:

Equipment and systems covered by this certificate are as follows:

General product information:

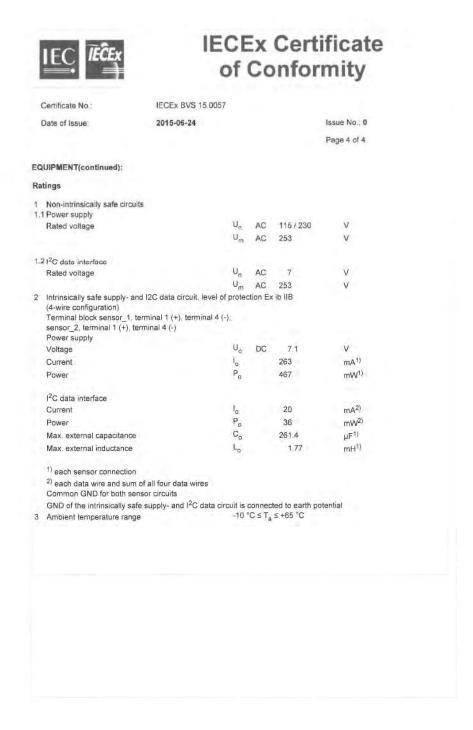
Type Code

Ex-Power Supply type xxxMI3ACIS* In the full designation, the '*' will be replaced by cable length information and

xxx' will be replaced by:
- '115' or '230' to indicate AC 115 V exclusive-or AC 230 V version suitable for optional installation in EPL Gc (Zone 2) area

or
- the letters "RAY" to indicate AC 115 V or AC 230 V version, variable by internal switch, intended for installation in the

Description


Description
The Ex-Power Supply type xxxMl3ACIS* is designed as associated apparatus, designated for installation in the safe area or optionally in areas requiring EPL Gc equipment and is used as intrinsically safe power supply of special intrinsically safe probes. The probes itself are subject to other IECEX CoCs.
Electronic components of the power supply are located on a printed circuit board mounted in a light-alloy housing. The side walls of the housing are fitted with cable glands for the non-IS circuits (power supply and I2C interface) and for up to two IS supply and data circuits intended for interconnection of IS probes.

Listing of all components used referring to older Standards

Subject and type	Certificate	Standards
Terminals WAGO type 236-404/000-009/999-950		IEC 60079-0 2004 Ed 4 IEC 60079-7 2006, Ed 4
Cable Glands		IEC 60079-0:2004 Ed.4 IEC 60079-7:2006, Ed.4
Cable Glands		IEC 60079-0:2004 Ed.4 IEC 60079-7:2006, Ed.4
Housing type aluKOM		EC 60079-0:2004 Ed.4 EC 60079-7:2006, Ed.4

No applicable technical differences

CONDITIONS OF CERTIFICATION: NO

